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ABSTRACT

As more and more transistors fit in a single chip, consumers of the electronics industry con-

tinue to expect decline in cost-per-function. Advancements in process technology offer steady

improvements in system performance. The improvements manifest themselves as shrinking

area, faster circuits and improved battery life. However, this migration toward sub-micro/nano-

meter technologies present a new set of challenges as the system becomes extremely sensitive

to any voltage, temperature or process variations. One approach to immunize the system from

the adverse effects of these variations is to add sufficient safety margins to the operating clock

frequency of the system. Clearly, this approach is overly conservative because these worst case

scenarios rarely occur. But, process technology in nanoscale era has already hit the power

and frequency walls. Regardless of any of these challenges, the present processors not only

need to run faster, but also cooler and use lesser energy. At a juncture where there is no

further improvement in clock frequency is possible, data dependent latching through Timing

Speculation (TS) provides a silver lining. Timing speculation is a widely known method for

realizing better-than-worst-case systems.

TS is aggressive in nature, where the mechanism is to dynamically tune the system fre-

quency beyond the worst-case limits obtained from application characteristics to enhance the

performance of system-on-chips (SoCs). However, such aggressive tuning have adverse con-

sequences that need to be overcome. Power dissipation, on-chip temperature and reliability

are key issues that cannot be ignored. A carefully designed power management technique

combined with a reliable, controlled, aggressive clocking not only attempts to constrain power

dissipation within a limit, but also improves performance whenever possible.

In this dissertation, we present a novel power level switching mechanism by redefining the
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existing voltage-frequency pairs. We introduce an aggressive yet reliable framework for energy

efficient thermal control. We were able to achieve up to 40% speed-up compared to a base

scheme without overclocking. We compare our method against different schemes. We observe

that up to 75% Energy-Delay squared product (ED2) savings relative to base architecture is

possible. We showcase the loss of efficiency in present chip multiprocessor systems due to excess

power supplied, and propose Utilization-aware Task Scheduling (UTS) - a power management

scheme that increases energy efficiency of chip multiprocessors. Our experiments demonstrate

that UTS along with aggressive timing speculation squeezes out maximum performance from

the system without loss of efficiency, and breaching power & thermal constraints. From our

evaluation we infer that UTS improves performance by up to 12% due to aggressive power level

switching and over 50% in ED2 savings compared to traditional power management techniques.

Aggressive clocking systems having TS as their central theme operate at a clock frequency

range beyond specified safe limits, exploiting the data dependence on circuit critical paths.

However, the margin for performance enhancement is restricted due to extreme difference

between short paths and critical paths. In this thesis, we show that increasing the lengths of

short paths of the circuit increases the margin of TS, leading to performance improvement in

aggressively designed systems. We develop Min-arc algorithm to efficiently add delay buffers

to selected short paths while keeping down the area penalty. We show that by using our

algorithm, it is possible to increase the circuit contamination delay by up to 30% without

affecting the propagation delay, with moderate area overhead. We also explore the possibility

of increasing short path delays further by relaxing the constraint on propagation delay, and

achieve even higher performance.

Overall, we bring out the inter-relationship between power, temperature and reliability of

aggressively clocked systems. Our main objective is to achieve maximal performance benefits

and improved energy efficiency within thermal constraints by effectively combining dynamic

frequency scaling, dynamic voltage scaling and reliable overclocking. We provide solutions

to improve the existing power management in chip multiprocessors to dynamically maximize

system utilization and satisfy the power constraints within safe thermal limits.
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CHAPTER 1. INTRODUCTION

Rapid advancements in process technology have revolutionized the way in which computing

systems are built over the past several years. Conventionally, operating frequency has been

the measure of choice to evaluate the performance of processors and system-on-chips (SoC).

Power continues to be a first-class design constraint and the major limiter to the growth of

system performance in the nanoscale era. Manufacturers are required to add guard-bands to

the system clock frequency to guarantee reliable execution of digital systems.

In a pipelined processor, the clock frequency is determined based on the circuit critical

path across all stages, under adverse operating conditions. However, the circuit propagation

delay may change, as process, voltage and temperature variations are introduced during cir-

cuit fabrication. Traditional design methodologies for the worst-case operating conditions are

too conservative as the critical timing delays rarely occur in tandem, during typical circuit

operation. Moreover, circuit delay has a strong association with the data being processed and

hence, not all instructions in a program under execution induce the worst-case delay. For

instance, in a carry-propagate adder, the worst-case delay occurs only when the carry is to be

propagated through each bit-slice, which occurs only for a specific input data set [1]. Such

infrequent occurrence of critical timing delays has opened a new domain of study that allows

improvement of processor performance to a greater extent through overclocking. Impressive

results can be achieved using this technique. For example, a 2.8GHz 45nm AMD Phenom

II processor running at speeds of up to 4GHz on air cooling alone have been reported [2].

Such is the interest with overclocking enthusiasts that chipset manufacturers are introduc-

ing technologies that support overclocking. AMD’s Overdrive and Advance Clock Calibration

technologies are cases in point. However, overclocking leads to system instability (i.e. system
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crashes) and overheating which ultimately lead to unreliable systems. Reliable overclocking

mechanisms strive to guarantee functional correctness by employing mechanisms to detect and

recover from timing errors. A host of recent works explore the viability of reliable overclocking

schemes to improve system performance beyond worst-case limits [3, 4, 5].

Although reliable overclocking mechanisms facilitate in improving performance, a major

hurdle in realizing them is their impact on on-chip temperature. These techniques necessitate

additional circuitry and also consume more power. Higher clock speeds and power densities

invariably escalate on-chip temperature over a period of time. The problem becomes much

more intensified due to the high performance requirements placed on the chip by the running

applications. Moreover, higher power dissipation curtails the battery life in portable systems.

In the case of high-end servers and high performance clusters, the effect is reflected in the cost

of providing the cooling solutions. As systems operate faster, on-chip temperatures quickly

reach and exceed the safe limits, causing localized hot spots in the chip that lead to system

crashes and possibly causing device failures. This poses a serious threat to the reliability of

these systems over the long run.

Dynamic Voltage and Frequency Scaling (DVFS) is a well studied system level on-line power

and thermal management technique. Current products from both the leading microprocessor

vendors, Intel and AMD, have dynamic thermal monitoring techniques that take necessary cor-

rective actions to maintain on-chip temperature. Industry standards such as Intel SpeedStep,

AMD PowerNow, and Transmeta Longrun technologies alternate between a set of predefined

voltage and frequency pairs, and choose the best pair based on environmental conditions and

processor workload. However, the reduction of frequency and the time taken for transition from

one operating voltage-frequency set to another to maintain system temperature causes signifi-

cant performance loss when executing applications that demand high performance. Techniques

such as Razor [6] provides a design based on aggressive design methodologies that impose Dy-

namic Voltage Scaling (DVS) without altering frequency. It is imperative to mention here

that such schemes still suffer moderate to significant performance degradation during voltage

transition. Moreover, these techniques do not fully exploit the data dependence while adopting
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timing speculation.

In this dissertation, we present a review of the current technology, what it offers to solve

the above mentioned problems and discuss the various challenges it faces. The goal of this

proposal is to render new ideas that overcome these challenges. Power and temperature play

an important role on the lifetime of a reliably overclocked system. This proposal investigates

the intricate inter-relationship between these parameters to guarantee the failure-free operation

of the system.

The failure of a system can be classified as transient and permanent. Transient failures

are temporary (e.g. glitches), however, permanent failures occur when the devices actually

fail. Increase in temperature is an undesirable but unavoidable side-effect that results from

manipulating frequency to enhance performance. This increase in temperature is one of the

main contributors of system failures. Achieving maximal performance benefits within the

thermal constraints by effectively combining DFS, DVS and reliable overclocking is one of the

goals of this thesis. Our solution embraces aggressive design methodologies allowing errors to

occur for performance benefits, while maintaining temperature within acceptable limits.

Driven by unending need for high performance and remarkable evolution in process tech-

nology, more than one processing core per chip has now become viable, thus paving the way

for chip multiprocessors (CMP). It is clear that power management (and hence temperature

regulation) is of utmost importance in CMP. DVARFS can easily be extended to cover CMPs

as well. Can DVARFS do anything at all to assist existing power management to improve

system efficiency further?. This research work answers this very question by developing an

efficient task scheduler for maximal utilization within critical thermal limits.

1.1 Thesis Organization

The report opens with a brief introduction to all the research issues addressed in the

dissertation; mainly it covers the need for temperature regulation and importance of energy

efficiency in aggressively overclocked systems. Chapter 2 presents an overview of recent related

researches published in literature. A brief treatment of the necessary background and detailed
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technical reviews of some related works are subsequently provided. In Chapter 3, we introduce

DVARFS and explain in detail about its functionality. We evaluate DVARFS with a variety

of metrics and show how the technique is suitable for a spectrum of systems, from handheld

devices to high performance processor systems. Following this is Chapter 4, where we explore

theoretical limits and possibility of increasing the short-path delays for possible increase in

performance enhancement through aggressive overclocking. In this chapter, we propose an

algorithm that efficiently and controllably increases the contamination delay of the circuit.

We also show our evaluation for benchmark circuits. Chapter 5 stresses the importance of

efficiency of processor systems and introduces utilization as a metric for power constrained,

high performance systems. In Chapter 6 we introduce our utilization-aware task scheduling in

chip multiprocessors and explain in detail its working and evaluation. In this chapter, we also

show how we built our chip multiprocessor simulator from a single core environment. Finally,

in Chapter 7, the report closes with concluding remarks and presents brief ideas to possible

further extensions and future works.

1.2 Thesis Contributions

The main goal of this dissertation is to investigate different system level techniques for

thermal control, energy efficiency, and performance augmentation. Our motive is to provide

viable techniques applicable to mainstream processors. In this work, we explore the potential

solutions to overcome key challenges faced by the nanoscale technology era.

The seminal contributions of this thesis are as follows:

• Existing techniques to speed up the circuit operation rely on faster clock rates. Reli-

able overclocking is the concept of aggressively clocking the processor, allowing timing

errors to occur, and recovering all those errors through timing speculation. Although

aggressive clocking methodologies achieve the speed-up, they neglect the issue of over-

heating the chips. These techniques invariably rely on powerful cooling solutions that are

quite expensive. This creates the need for an efficient thermal management scheme at

the micro-architecture level to scrutinize on-chip temperature yet achieve as much high
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performance. In this thesis, we study the impact of on-chip temperature on processor

lifetime and we explore the possibility of achieving a desired lifetime by controlling the

operating temperature.

• Traditional power management schemes work based on switching back and forth between

different power levels that are determined offline. As we point out in our study, this poses

as a huge overhead to achieve high performance. Hence, the power management schemes

have to be re-defined to overcome this overhead. Contrast to traditional DVFS, where

operating frequency is tuned to match circuit delay, we propose multiple predefined

frequency levels, beyond conservative limits at any voltage level. We adopt a reliable

and aggressive framework for our study. The system power level is now selected from a

spectrum of frequencies (instead of one) for every voltage level. However, this incurs a

cost due to timing error recovery. We develop Dynamic Voltage, Aggressive and Reliable

Frequency Scaling (DVARFS) - an energy efficient thermal control mechanism using the

redefined power level switching.

• Aggressive clocking systems have timing speculation as their central theme and operate

at a clock frequency range beyond specified safe limits, exploiting the data dependence on

circuit critical paths. One of the major factors limiting the degree of timing speculation

is the contamination delay of the circuit. The margin for performance enhancement is

restricted due to extreme difference between short paths and critical paths. This has

been one of the major factors that restrict realizing timing speculation architectures in

practical circuits. This requires a fast and efficient method during the synthesis process to

manage the short paths by increasing their delay up to a threshold. In this thesis, we show

that increasing the lengths of short paths of the circuit increases the margin of timing

speculation, leading to performance improvement in aggressively designed systems. We

develop Min-arc algorithm to efficiently add delay buffers to selected short paths while

keeping down the area penalty. We explore the possibility of increasing short path

delays further by relaxing the constraint on propagation delay, and achieve even higher

performance.
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• Multiprocessors in a chip have become a common commercial commodity in the last few

years. Proficient power assignment across different cores is intriguing. Understanding

thread power requirements and assigning power to the cores running these threads ac-

cordingly is the problem of our interest. We perform a study on limitations of existing

power management solutions due to excess power supply. We bring out utilization as a

factor for choosing a power level. We develop Utilization-aware Task Scheduling (UTS)

an energy-efficient power management solution for CMPs. We add utilization metric

constraint to the existing power constraints to schedule threads to the cores. We show

that this model, along with aggressive, reliable framework will perform very differently

than any of the existing power management techniques in improving the overall system

efficiency provided timing errors are harnessed.
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CHAPTER 2. BACKGROUND

The persistent CMOS scaling conforming to the ‘Moore’s law’ has provided a steady im-

provement in cost-per-function. This has led to significant advancements in industrial and

consumer electronics, and economic productivity. For instance, the current 45nm Intel i-7

quad core processor supports up to 3.3GHz clock frequency and is available in PC market [7].

Nevertheless, the process technology, beyond 45 and 32nm, is facing new challenges under the

conventional path of technology scaling [8]. The present processors not only need to run faster,

but also cooler and use less energy.

2.1 Clock Frequency in Nanoscale Technology
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Figure 2.1 (a) Typical pipeline stage (b) Circuit delay with process, voltage

and temperature variations (c) Clock period with guard bands

In a pipelined processor, the datapath consists of several stages, comprising dependent and

independent blocks of combinational logic interleaved by set of register elements, as illustrated

in Figure 2.1(a). Ideally, the clock frequency is determined by the circuit critical path across all
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the stages. However, as device size shrinks further in the nanoscale era, it becomes increasingly

complex to control the manufacturing process. This eventually leads to non-uniform circuit

delay distribution across the chip.

The deviations are mainly reflected in three forms, namely, process, voltage and tempera-

ture variations. Figure 2.1(b) shows a general trend how the increase in variation of each of

the category affects delay. From this, we observe that the best case design occurs with the

least variations in the device dimensions, maximum voltage and lowest temperature. And, the

worst case design is the one with maximum dimensional variation, lowest voltage and maxi-

mum temperature. During manufacturing, in order to guarantee correctness even at the worst

scenario guard bands are added to the clock period, as shown in Figure 2.1(c).

The vendor-specified frequency includes a safety margin to provide tolerance for process

variations, voltage fluctuations, extreme temperatures and power densities. However, such

worst-case operating conditions and timing delays rarely occur in tandem during typical circuit

operation. This had shifted the paradigm from worst case design methodology to design for

common case. Thus, breaching the worst case design limits while guaranteeing correctness

became the problem of interest in order to extract maximum performance out of the processor.

Reliable overclocking allows embedded systems and processors to run at higher frequencies than

the manufacturer specified worst-case frequency. For systems operating in typical operating

environments, significant benefits can be achieved through overclocking, if reliable execution

can be guaranteed.

2.2 Better-than-worst-case Designs

One of the earliest works on aggressive clocking, TEATIME [5] scales the frequency of a

pipeline using dynamic timing error avoidance. This technique attempts to achieve better-than-

worst-case performance by realizing typical delay operation rather than assuming worst-case

delays and operating conditions. TEATIME achieves this by modeling a one-bit wide delay

chain that reflects the worst-case critical path of the system, plus a safety margin. A prior work

to this called TIMERTOL [9] exists in which, timing error tolerance is achieved by multiple
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special copies of the pipeline logic. Similar architectures include CTV [10] and X-Pipe [11]

that propose timing speculation at pipeline stage level.

The most significant aspect that can be exploited by reliable overclocking is the input data

dependency of the worst-case delays. The worst-case delay paths are sensitized only for specific

input combinations and data sequences [12]. Typically, the propagation delay of the digital

system is much less than the worst-case delay and this can be exploited by overclocking. The

benefits of overclocking can be furthered by allowing a tolerable number of errors to occur,

and have an efficient mechanism to detect and recover from those errors. In addition to this,

systems have different design restrictions, such as power, energy or area constraints. Based on

all this, there are numerous architectures that have been proposed over the years.

Architectures without logic replication have been proposed at stage level. The basic idea

is to duplicate latching; using shadow latches that always guarantees correctness. When a

timing error is detected, it is recovered the following cycle. This technique along with dynamic

voltage scaling has been used to improve energy efficiency [6]. Along with adaptive clocking

mechanisms, reliable overclocking improves performance drastically [3]. In [13], the trade-

off between reliability and performance is studied, and overclocking is used to improve the

performance of register files.

Timing speculation has been well studied in the chip multiprocessors as well. Generally,

these techniques couple two cores such that one of them is sped-up with the help of the other.

The acceleration may be due to the execution hints provided by the advanced stream as in

Slipstream [14], or in addition the advanced stream may be overclocked as in Paceline [15].

Here, the checker compares the results at checkpoints regularly. If there is a mismatch, the

checker copies its current state to the leader.

Other works in the domain seek to improve common case performance through functionally

incorrect design [16, 17]. The Selective Series Duplex architecture [18] consists of an integrity

checking architecture for superscalar processors that can achieve fault tolerance capability

of a duplex system at much less cost than the traditional duplication approach. DIVA [17]

uses spatial redundancy by providing a separate, slower pipeline processor alongside the fast
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processor. The desire for better than worst case designs is much more serious in nanoscale

technology. PVT variations within and across the die are causing the bottleneck while selecting

the worst-case frequency. ReCycle [19] uses additional registers and clock buffers to apply cycle

time stealing in the pipeline, from faster stages to the slower ones. Another technique, EVAL

[20] has been proposed to maximize performance with low power overhead in the presence of

timing induced errors.

Apart from these run-rime schemes, there are static methods that are specifically developed

for better than worst case architectures. The effect of parameter variations and its impact on

timing errors has been studied in [21]. BlueShift [22] proposes a design methodology from

ground up. The main idea is to identify and optimize the frequently used critical paths, called

the ‘overshooters’ at the expense of the lesser frequent ones.

2.3 Impact of Scaling

Reliable overclocking methodologies address the timing error problem albeit other crucial

factors exist that confine overclocking such as power and on-chip temperature.

2.3.1 Power Dissipation

The power consumed by a VLSI chip consists of two parts: dynamic and static. Dynamic

power is consumed due to the clock switching activity. Dynamic power is dependent on

capacitance (C), voltage (V ), and frequency (f), and is given by Equation (2.1). The node

transition activity factor, α is the effective power consuming transitions per clock cycle (α = 0.5

for 50% duty cycle). Since power is directly proportional to frequency at which the circuit

operates, overclocked systems consume more power than non-overclocked systems.

Pdyn = αCV 2F (2.1)

Static power or leakage power is the inherent power consumed by the circuit even when the

clock is stopped. The leakage increases proportionally with temperature, as given by Equation
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(2.2) [23]. Here, β is a technology dependent constant (β is 0.036 and 0.017 for 180nm and

70nm respectively), T0 is the temperature of a reference point and Ti is the temperature

at ith instant with respect to the reference point. Note that Equation (2.2) has a positive

feedback: increase in temperature leads to higher leakage and total power, which in turn

increases temperature.

Pleak ∝ eβ(Ti−T0) (2.2)

Earlier, technologists considered dynamic power to be the major component of the total

power consumed and ignored the static component, as static power dissipated had been far less

significant. But now, it has been realized that, in deep sub-micron technology, this assumption

is no longer valid, as leakage power has become a substantial constituent of total power dissi-

pated. As power dissipation is proportional to quadratic of the operating voltage, scaling down

voltage is an effective way of cutting down total power. However, scaling voltage slows down

the circuit demanding increased clock period. This Dynamic Voltage and Frequency Scaling

(DVFS) technique is a widely accepted method for power management, however, inevitably

accompanied by significant performance overhead.

As mentioned above, increased power dissipation leads to escalated on-chip temperatures.

Since cooling mechanisms are not cost effective, the necessity for a control mechanism built

within the processor chips emerged as an economically viable approach. Designs began to

include thermal sensors in various locations on a processor chip [24]. DVFS mechanisms

were employed to manage temperature. As dynamic energy scales in quadratics with supply

voltage, significant energy reduction is possible by lowering the supply voltage [25]. However,

the resulting slow processor narrows the gap between high performance and low power [26].

Follow on research started to focus on design of thermally aware high performance processors

aiming for minimal performance impact for specific applications [27, 28, 29]. Clock gating and

voltage gating were developed to lower power dissipation during processor idle times and does

not affect the performance.

Offline methods have the capability to deliver almost the same effect as dynamic schemes in

thermal management. HotFloorplan involves thermal aware floor-planning, based on simulated
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annealing [30]. Profile based static approach reduce peak processor temperature with relatively

lower performance overhead. Another static approach proposes temperature aware design for

low-power systems-on chip [31]. The design divides multiprocessor system on-chip into blocks

using 3-D finite element analysis.

The need for low power architectures that deliver high performance while consuming as

less power as possible is increasingly being felt by embedded system designers as they try to

pack more and more power intensive computational tasks while curtailing their power budgets.

Dynamic Voltage Scaling (DVS) is an approach that aims to bring down power without altering

clock frequency. Razor architecture [6, 32] proposes such a design methodology. Here, the

timing errors due to DVS are detected and corrected by additional checking circuitry. The

voltage is dynamically scaled from the worst case settings, keeping track of the timing errors,

until the number of timing errors exceeds a target error set point. Razor suffers a moderate

performance cost because of reduction in voltage.

Industry standards such as Intel SpeedStep, AMD PowerNow, Transmeta Longrun tech-

nologies alternate between a set of predefined voltage and frequency pairs and choose the best

pair based on worst-case voltage, temperature and process conditions. Correlating voltage

controlled oscillator approaches have been proposed wherein the oscillator speed automatically

adapts based on the supply voltage and generates the fastest safe clock speed [33, 34]. More

aggressive power reduction can be achieved by tuning the supply voltage of individual processor

chip using embedded inverter delay chains [35].

2.3.2 Thermal Impact on Lifetime Reliability

Higher temperatures not only increase power budget, but also affect the lifetime reliability

of the devices. Several factors such as, rapid heating and cooling of processor chips create

thermal cycles and localized heating, leading to hot spots, ultimately wearing out the circuits.

To improve the overall reliability and lifetime of systems, the thermal performance of sys-

tem should be monitored and the average degradation of the transistors should be managed

[36]. RAMP [37] provides an architectural solution to the lifetime reliability problem. The
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dynamic reliability management (DRM) presented in the paper ensures that target lifetime

reliability is achieved. RAMP relates mean time to failure due to various wear out factors and

brings the importance of on-chip thermal balance. Table 2.1 summarizes five critical failure

mechanisms, namely, electromigration, stress migration, time dependent dielectric breakdown,

thermal cycling and negative bias temperature instability as specified in RAMP, with their re-

spective mean time to failure (MTTF). Here, k is Boltzmann’s constant and T is temperature

in Kelvin. These wear out phenomena create impedance in the circuits gradually leading to

permanent device failures.

Electromigration occurs due to transport of material due to gradual movement of the ions

in a conductor caused by the momentum transfer between electrons and the diffusing metal.

Here, J is the interconnect current density. Activation energy, EaEM and n are constants that

depend on the interconnect metal used.

Stress Migration is a phenomenon that creates voids in the circuit, as a result of hydro-

static stress gradient. These voids may lead to high impedance or even break the circuit. This

occurs due to difference in thermal expansion rates of materials. Again, EaSM , m and the

metal deposition temperature, Tmetal are metal dependent constants. Tmetal generally assumes

a value far higher than circuit operating temperature. This means, |Tmetal − T |−m increases

with T . This is the reason why improving lifetime reliability is not as obvious as bringing

temperature down.

Time dependent dielectric breakdown, also known as oxide breakdown occurs as a

result of destruction of the gate oxide layer, and gradually leads to permanent transistor failure.

Here, a, b,X, Y and Z are fitting parameters.

Sudden rise or fall in temperature causes thermal cycles which ultimately lead to device

failure. Thermal cycles are caused by differences in thermal expansion rates across metal

layers. Thermal cycling is proportional to the difference between current temperature and

the ambient temperature Tambient. Here, q refers to the Coffin-Mason exponent, which is

empirically determined material dependent constant. From this definition, one could observe

that sudden cooling of devices below Tambient worsens the lifetime reliability.
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Wearout Mecha-
nism

Proportional Model (MTTF) Fitting Parameters

Electromigration
(EM)[38]

(J)−ne
EaEM

kT ; J=Current Density n=1.1, EaEM=0.9eV

Stress Migration
(SM)[38]

|Tmetal − T |−m e
EaSM

kT m=2.5, EaSM=0.9

Time dependent di-
electric breakdown
(TDDB)[39]

( 1
V

)(a−bT )e
[X+(Y/T )+ZT ]

kT a=78, b=-0.081,
X=0.759eV, Y=-
66.8eV/K, Z=-8.37e-
4eV/K

Thermal Cycling
(TC)[38]

( 1
T−Tambient

)q ; Tambient=Ambient Temperature q=2.35

Negative Bias Tem-
perature Instability
(NBTI)[40]

[{
ln
(

A
1+2eB/kT

)
− ln

(
A

1+2eB/kT − C
)}
× T

e−D/kT

]β1
A=1.6328, B=0.07377,
C=0.01, D=0.06852, β1
=0.3

Table 2.1 MTTF for critical wearout models

Figure 2.2 shows how the increase in steady state temperature affects the processor lifetime.

The proportionality constants are chosen assuming the baseline MTTF at 337K to be 30 years

[37]. We use the reliability model to determine the critical temperature, for a target lifetime.

Figure 2.2 MTTF for different steady state temperatures

2.4 Evolution of Chip Multiprocessors and their Current Problems

The quest for higher performance requirements had paved the way for the micro-architectural

innovations. Instruction Level Parallelism (ILP) is a key factor that decides the microprocessor

performance. Wide issue superscalar processors extract the last ounce of performance from the
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single threaded applications. Increasing the issue width beyond certain limit diminishes yield

and also results in low power-performance efficiency. Several architectural innovations, such

as Very Long Instruction Word (VLIW), multi-cluster superscalar and Simultaneous Multi-

threaded (SMT) processors were proposed as an extension to the existing processor designs.

Deeper pipelines offer faster clock frequency by dividing complex stages into number of sub-

stages. For instance, Intel Pentium 4 processor has a twenty stage pipeline [41]. However,

studies show that increasing pipeline depths may no longer hold for improving clock frequency

[42].

Due to high power constraints, processor technology generations are unable to scale clock

frequency as desired. Evolution of Chip Multiprocessors (CMP) eased power problems com-

pared to other options. IBM introduced POWER4 [43] and POWER5 [44] architectures,

which were the initial industry attempts of CMPs. Recently, there are many designs that have

emerged in this direction, including Intel Montecito [45] and Sun Niagara [46], making CMPs

the natural choice for low power and performance scalable architectures.

2.4.1 Thermal Management in CMP

Although multicore processors were designed to ameliorate the power related problems,

due to technology’s strict adherence to Moore’s law, power density continues to increase. In

addition to this, the temperature is not uniformly spread across the chip due to unbalanced

workload across cores. This leads to localized hot spots at particular portions of the chip.

The single-core power management techniques, such as gating and DVFS cannot be directly

applied to the multiple core scenarios due to the associated overhead. Also, a multicore scenario

offers additional options such as thread migration that may reduce performance loss to some

extent. It has been shown that independent per-core DVFS combined with thread migration

improves performance up to 2.6X over a per-core gating [47]. Nevertheless, the effectiveness of

DVFS is hampered by the slow voltage transitions. Incorporating on-chip regulators enables

nanosecond scale voltage switching and can lead to significant energy savings [48].

As the number of cores increase in the CMPs, thermal management becomes non-trivial.
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Workload characteristics, neighborhood temperature, and core locality play a vital role in de-

ciding the core temperature. Based on this, many thermal aware task schedulers for CMPs

have been proposed [49, 50, 51]. Recently, a thermally constrained power model has been

proposed that maximizes the DVFS state in any interval, within a given power/thermal bud-

get [52]. Although the resulting system outperforms reactive and ad-hoc voltage switching,

maintaining the system at the maximum power state may not result in maximum efficiency.

Industry standards such as Intel SpeedStep, AMD PowerNow, and Transmeta Longrun

technologies alternate between a set of predefined voltage and frequency pairs and choose the

best pair based on environmental conditions and processor workload. However, the present day

DVFS schemes involve a large overhead at the time of transition from one operating voltage-

frequency set to another. This creates the necessity for a low-overhead solution, maximizing

energy efficiency and working within the thermal constraints.

2.5 Timing Speculation Architectures

In this part of the chapter, we introduce some of the timing speculating architectures,

explain their working and point out their positive and negative impact. We start by introducing

briefly to an existing timing speculation framework for a pipelined processor. Processors that

use reliable overclocking have this in-built error detection and recovery mechanism to deal with

timing errors that may occur. We assume this error detection and recovery framework in the

context of our proposed work. We discuss the application of timing speculation to boost single

threaded performance. In the later sections of the chapter, we discuss how the most recent

works handle these challenges in CMPs. We also bring out the fallouts of these schemes.

2.6 Local Fault Detection and Recovery

Reliable overclocking enables processor to work at frequencies past the worst-case limit,

thereby causing timing errors to occur. Therefore, it is necessary to add built-in error detection

and recovery mechanism. Local fault detection and recovery (LFDR) circuit we describe here

is one such mechanism.
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In a pipelined architecture, timing errors occur during overclocking when data takes longer

time to propagate through the combinational logic stage, but the register at the end of the

stage has already been clocked to latch the data. For a given combinational circuit, time for

data to propagate through the stage depends on the data themselves and the supply voltage.

Timing error occurs due to the mismatch between the circuit delay and the provided clock

frequency. The LFDR circuit detects and corrects such errors with the help of an additional

backup register controlled by a phase shifted (PS) clock. Thus, the circuit uses two clocks

working at the same overclocked frequency.
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Figure 2.3 (a) Typical pipeline stage in a reliably overclocked processor (b)

Illustration of aggressive main and PS clocks

A brief description of how these circuits work is presented here. The Main register is

controlled by the Main Clock and the Backup register is clocked by the Phase Shifted PS

Clock. Both Main and PS Clocks have the same frequency at all times, but are phase shifted as

needed. The dense combinational logic has multiple inputs and outputs, and possibly with more

than one path from each input to output. The circuit operates without timing errors, unless

the time period of the tuned clock is insufficient for the active paths in the combinational logic
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to reach the Main register. In that case, the Main register would have latched an erroneous

value. However, the Backup register always latches the correct value, as long as the PS Clock

is provided with the necessary phase shift. This is indicated by the arrow going from the Main

Clock to the PS Clock in Figure 2.3(b). The amount of phase shift is such that, the time delay

from the first rising edge of Main Clock to the second rising edge of PS Clock is not less than

the propagation delay of the circuit. Also, it should be noted from Figure 2.3(b) Case (ii) that

the maximum phase shift, and hence overclocking is limited by the contamination delay, which

is the minimum amount of time beginning from when the input to a logic becomes stable and

valid to the time that the output of that logic begins to change, of the circuit. In case, if the

system is overclocked further, the Backup register is no longer guaranteed to latch the correct

value.

When data latched in the Main register and the Backup register do not match, a local

error signal is raised. In case of an error, a local recovery measure is taken by changing the

control of multiplexer to select data from Backup register during the next cycle. The stage

error signal is raised by performing logical OR of all local errors. All pipeline stages preceding

this stage are stalled for a cycle, which is achieved through a global recovery mechanism.

Moreover, all the stages following this stage process a bubble in a pipelined fashion. We

discuss two applications of the LFDR circuit in the following subsections.

2.6.1 SPRIT3E

The Superscalar PeRformance Improvement Through Tolerating Timing Errors (SPRIT3E)

was designed to dynamically tune superscalar processors beyond the worst case limit for en-

hancing their performance [3]. The number of timing errors that occur is directly proportional

to the amount of frequency scaling. Therefore, by fixing the maximum number of errors in

a time window, SPRIT3E limits the timing errors under a budget. The framework is evalu-

ated for an 18 × 18 multiplier implemented in FPGA. Limiting the timing error budget to a

reasonable number, the LFDR implemented circuit can enhance the performance up to 44%.

Similar experiment is performed for DLX superscalar processor, which is also synthesized for
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the FPGA. By limiting the target error rate to 1%, SPRIT3E achieves on an average 43%, and

a maximum of 57% over the worst case settings.

2.6.2 Razor

Razor uses timing error tolerance in the context of Dynamic Voltage Scaling (DVS) [6, 32].

Razor explores the extent to which voltage can be scaled down at a given frequency. The

goal of this work is to achieve increased energy reduction by eliminating the voltage margins.

The proposed Razor technique was implemented in a 64-bit Alpha processor prototype at

0.18µm technology, operating at 200MHz. The prototype was verified using simple programs.

Analysis show that for the critical stages (Decode and Execute), only 192 Razor flip-flops out

of a total of 2048 were used. Simulations were performed to analyze performance and power

characteristics. In a 64-bit Alpha processor only 192 flip-flops out of 2048 flip-flops required

Razor augmentation. Results show an average of 40% power reduction compared to traditional

design that includes 3.1% energy overhead due to additional circuitry. There is a moderate

performance overhead, around 3%, due to the voltage switching activity.

2.7 Thermal Consequences of Overclocking

Reliable dynamic clock frequency tuning for performance enhancement is incomplete with-

out considering the thermal effects. Processors cannot be overclocked indefinitely, as this in-

tensifies on-chip temperature. Thermal plots shown in Figure 2.4 compares a non-overclocked

Alpha EV6 processor, running at 1GHz and an overclocked one, running at 2GHz. We

observed that steady state for dynamic reliable overclocking reached 380K, while the non-

overclocked settles at around 330K. This necessitates an efficient scheme for thermal balance

in reliably overclocked processors, which is part of the proposal’s goal.

2.8 Facelift

Continuous workload activity causes wearing out of the devices in microprocessors. The

device aging gradually results in slower circuits. Facelift attempts to hide and slow down aging
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(a) (b)
320K

382K

Figure 2.4 Steady state analysis (a) Non-overclocked (b) Reliably over-

clocked

in multicore processors through aging-driven application scheduling and appropriate voltage

changes during the service life [53].

Facelift mainly focuses on the impact of aging on circuit critical paths. It takes into

consideration two of the wear out phenomena, namely Negative Bias Temperature Instability

(NBTI) and Hot Carrier Injection (HCI) that primarily affects PMOS and NMOS transistors

respectively. The circuit slow down is directly proportional to the elevation of threshold voltage

(Vt) of the transistors. The paper uses the alpha power law to model this. This is incorporated

in the critical paths of the processor and the cache.

Facelift categorizes tasks into high-T and low-T jobs. Since cores do not age uniformly, the

effect of aging is hidden by assigning high-T jobs to the faster cores and low-T jobs to slower

ones. This aging-driven scheduling enables the chip to appear age less. Figure 2.5(A) shows

the trends comparing slowest and fastest cores with traditional and aging-driven scheduling.

The impact of aging is slowed down via chip-wide Adaptive Supply Voltage (ASV) and

Adaptive Body Bias (ABB). ABB is further classified into Forward Body Biasing (FBB) and

Reverse Body Biasing (RBB) based on the voltage polarity. Similarly, ASV is classified into

ASV+ and ASV- depending on Vdd value. Hence, combing RBB and ASV- results in slower

circuits and hence causes slower aging. This technique called SlowAge. The second option is

to combine FBB and ASV+ for faster circuits. Hence called HighSpeed. Figure 2.5(B) shows
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(A)

(B)

Figure 2.5 (A) Application scheduling effects (a) Traditional (b) Aging–

driven (B) Applying techniques that change the aging rate

application combination of these techniques and expected service life. From the empirical

model used, it is consequently observed that it is best to apply SlowAge at the beginning of

the service life and HighSpeed towards the end.

The evaluation architecture is modeled for a CMP at 32nm with 16 cores, running at

4GHz. Each core models a 4-issue out-of-order Alpha 212624 processor. Simulation results

show that by hiding and slowing down aging, a 7 year service life processor can run 14-15%

higher frequency. Alternatively, Facelift also enables processors designed for 5-7 months service

life and still use it for 7 years. Implementation of Facelift is quite simple. It only involves re-

calculation guard bands for hiding aging. Current technology also supports the ABB and ASV

techniques that are used for the slowing down aging.

The basic idea behind aging-driven scheduling is to make slowest core age slowest and

faster core age fastest. This suggests scheduling hot tasks to fast cores and cold tasks to slow

cores. This approach may not be efficient from thermal point of view. In other words, this

static scheduling may lead to hot spots. Further, Facelift does not take into consideration the

neighborhood thermal impact on core aging. This cannot be done unless there is a dynamic

scheme that keeps track of temperature online. The technique can be further improved as
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a dynamic scheme to control aging, considering input dependence and making use of PVT

guards bands.

2.9 Thread Motion

Thread Motion (TM) is an alternative technique to DVFS for fine grained power manage-

ment in multi-core systems [54]. The aim is to increase system throughput by extracting the

maximum out of a given set of applications at a given power budget.

Figure 2.6 (a) Thread motion in a multicore system. (b) Exploiting fine–

grained application variability in two running threads. (c) Duty

cycling between 2 VF levels to match IPC

Traditional DVFS are OS driven and are hence too slow to fine variations in the program

behavior. Thread Motion works under the basic premise that individual cores work at dif-

ferent voltage-frequency (VF) levels. Thread Motion allows threads to migrate between cores

according to the current state of threads and cores. Figure 2.6 illustrates the Thread Motion

phenomenon. It uses variability per instructions as a measure of application variability. It is

calculated from the difference in IPC between sampling intervals.

Thread Motion involves two approaches: time− driven and miss− driven. As their name

suggest, TM is invoked on a regular time (cycles) and number of cache misses respectively. TM

assumes a clustered multicore architecture, where inter-cluster TM is more expensive and less
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frequently used compared to intra-cluster TM. The TM manager runs in a separate embedded

microcontroller and runs the TM algorithm. The algorithm is a simple, cost-benefit analysis

performed in irregular intervals. Implementing TM involves additional cost for inter-cluster

cache penalty, prediction and register file latency. In spite of all these, TM with two VF

levels performs in par with traditional DVFS schemes. Further for a given power budget, TM

provides up to 20% better performance than coarse coarse-grained DVFS.

Although the potential performance benefits of TM are quite obvious, it suffers some lim-

itations. First, irregular VF domains cause unbalanced heat distribution across cores. This

difference in VF levels across cores may affect the life time of the cores in the long run. One

way to overcome this effect is to combine DVFS with TM instead of using it as an alterna-

tive. Secondly, implementing TM for non-shared caches and complex cores are quite complex.

It would involve an additional engine that might pose as an overhead from performance and

power point of view.
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CHAPTER 3. DYNAMIC VOLTAGE, AGGRESSIVE AND RELIABLE

FREQUENCY SCALING

Persistent CMOS scaling has led to significant progress in industrial and consumer electron-

ics, and economic productivity [7]. Nevertheless, the process technology, beyond 45 and 32nm,

is facing new challenges under the conventional path of technology scaling [55]. As IC chips

get denser, consumers of the electronics industry can expect continuous decline in cost-per-

function. Process technology in nanoscale era has already hit the power and frequency walls.

In spite of all these hurdles, the processor industries not only aim to build faster circuits, but

also cooler and energy efficient one. At a juncture where there is no further improvement

in clock frequency is possible, data dependent latching through timing speculation provides

a silver lining. A carefully designed power management technique combined with a reliable,

controlled, aggressive clocking not only attempts to constrain power dissipation within a limit,

but also improves performance whenever possible.

In this chapter, we present a novel power level switching mechanism by redefining the

existing voltage-frequency pairs. We introduce an aggressive yet reliable framework for energy

efficient thermal control. We were able to achieve vast improvements in performance compared

to a base scheme without overclocking. We compare our method against different schemes using

other metrics. We observe that our solution provides huge Energy-Delay squared product

(ED2) savings, with controlled on-chip temperature. In short, we develop and evaluate a

thermally constrained, reliable and energy efficient high performance system.
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3.1 Design and Implementation of DVARFS

In the previous chapter, we emphasized the consequences of overclocked circuits. It is nec-

essary to throttle overclocking based on the on-chip temperature. We developed a thermal

constrained reliable overclocking technique that ameliorates system power and lifetime relia-

bility [56]. This initial exploration has opened up a direction towards developing a powerful

thermal management scheme that enhances performance as much as possible while operating

well within the thermal limits, guaranteeing an extended system lifetime. We alter the existing

DVFS technique to support reliable overclocking, and unify them by a common framework.

We call scheme, DVARFS - Dynamic Voltage - Adaptive and Reliable Frequency Scaling.

3.1.1 Voltage-Frequency Feedback Control System

The control system encompasses two global feedback systems, one for controlling reliable

overclocking and the other to regulate voltage. The two feedback systems and their interplay is

illustrated in Figure 3.1. The major components of the control system are the voltage controller

(VC), voltage regulator (VR), clock controller (CC) and clock generator (CG). VC works based

on the readings from a thermal sensor. Voltage is lowered to bring down the temperature when

sensor temperature exceeds critical limits, and when the system is below critical temperature,

voltage is scaled up. VC assigns new voltage, V , to VR and corresponding base frequency, F

to the controller CC.

At every voltage level, CC dynamically tunes clock frequency based on the number of

timing errors reported by the error counter. CG provides the Main and PS clocks to the

enhanced pipeline for timing error recovery. CG receives two inputs from the clock controller,

namely, the new frequency (F + ∆F ), and the corresponding amount of phase shift (Φ). ∆F

can be positive or negative depending upon whether the base frequency needs to be increased

or decreased. The phase shift, Φ is calculated based on F and ∆F . Additional control is

necessary to freeze the pipeline stage during frequency scaling and flushing the pipeline during

voltage scaling (to save power during stall cycles).
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Figure 3.1 Temperature and timing error control loop

3.1.2 Analyzing Aggressive Clocking Systems

3.1.2.1 Error Rate

Aggressive clocking comes with the price of recovering timing errors during typical circuit

operation. For any practical benefits, it is necessary to fix a bound for overclocking, as every

error induced imparts overhead in terms of additional recovery cycles. Let tno denote the

current time period and tov denote the time period after overclocking. Let tdiff be the difference

in time between original and next time period. Then, to execute n clock cycles, the total

execution time is reduced by tdiff × n, when there is no error. Let Se, k and tpll denote the

fraction of clock cycles affected by errors, error recovery cycles and time for PLL to lock next

frequency respectively. Then, equation 3.1 gives the bound on the timing errors that can be
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tolerated without adding overhead.

Se <
tdiff
tov × k

− tpll
n× tov × k

(3.1)

We dynamically switch between different discrete voltage settings and vary frequency in a

given range at the current voltage setting. The two independent feedbacks allow us to set

different sampling intervals based on their respective switching penalties. Current products,

such as IBM PowerPC 750GX processors use dual PLL scheme for clock generation to per-

form dynamic power-performance scaling [57]. This allows instant frequency switching, when

frequency sampling interval is greater than tpll.

3.1.2.2 Speed-up

During overclocking, the clock frequency of the memory is not scaled, thereby increasing

the total number of execution cycles. Let each memory operation take Cm cycles at tno and

q be the factor by which the frequency is scaled i.e., (q = tno
tov

). Now, after overclocking each

memory operation takes q.Cm cycles.

Let us assume that the system takes n clock cycles without considering memory cycles.

If α denotes the factor of memory accesses that happen when the system executes n cycles.

Then, the new execution time due to reliable overclocking is given by:

Exov = n.tov + n.α.q.Cm.tov + n.Se.k.tov (3.2)

To express original runtime (Exno) from Eqn 3.2, we replace tov by tno and substitute q = 1

& Se = 0. The overall speed up is calculated as given by Eqn 3.3.

Speedup =
Exno
Exov

=
q × (1 + α.1.Cm)

(1 + α.q.Cm + Se.k)
(3.3)

From Eqn 3.3, it is clear that computational density of workloads has a direct impact

on speed up. Detailed analysis on how workload attributes affect performance enhancement
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margin is provided in Chapter 5.

3.1.2.3 Voltage-Frequency Pairs

The voltage controller supports a set of predefined discrete voltage levels. The supply

voltage has a strong association with circuit delay. For our understanding, let us consider the

empirical model for this as given by Eqn (3.4).

Delay =
C.V 2

2vSATCOXW (V − VT )2
(3.4)

Here, vSAT , COX and W are technology dependent constants; C specifies the load the circuit

drives; V and VT are the system voltage and threshold voltage respectively (VT = 0.2398V for

45nm technology) [58]. Eqn (3.4) suggests that the time period provided should match this

Delay.

In conventional DVFS, the frequency is reduced corresponding to the circuit delay at each

voltage level. The voltage-frequency (VF) pairs are determined off-line during design phase

for the worst-case settings. However, in our case it is necessary for us to determine the VF

pair dynamically. One way to do this is to relate the number of timing errors with the circuit

slow down, thereby relating to the capacitive load that can be driven for that time period.

Rearranging Eqn (3.4) for Vno, tno and Vov, tov yield the following loads that can be driven

respectively.

Kno = tno(Vno−VT )2

V 2
no

, Kov = tov(Vov−VT )2

V 2
ov

Thus, the percentage slow down for the new VF pair with respect to the current one is given

by Eqn 3.5.

%SlowDown =
Kno −Kov

Kno
× 100 (3.5)

Let us assume that at a given voltage, the system had settled down on a frequency that

yields maximum performance under controlled error rate. During DVFS, the VF pair that has

the same %SlowDown would bear the same error rate. As opposed to the traditional DVFS,
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where the frequency for the corresponding voltage is set a priori (and cannot be changed), here

the clock controller is still prone to alter the frequency subject to the occurrence of timing

errors.

3.1.3 Temperature Throttling

For thermal control, we define a predefined temperature set point based on which, the volt-

age feedback control functions. The power down temperature, Tp is the maximum temperature

the circuits can withstand (typically, Tp = 105◦C). The critical temperature, Tc, is a preset

temperature below Tp, for reliable operation of the circuit. We desire the system to stay within

this limit, by switching back and forth the operating voltage.

3.2 Experimental Framework

To validate DVARFS technique, we use SimpleScalar simulator [59] for Alpha EV6 proces-

sor. Table 4.1 provides the baseline values for the simulator. Thermal sensor implementation

is done using HotSpot 4.0 [60]. The instantaneous power trace to calculate temperature, is

provided by Wattch power model [61] integrated within the SimpleScalar tool. The entire

framework is shown in Figure 3.2.

3.2.1 Wattch-HotSpot Integration

Wattch is an accurate, architecture level power tool that is embedded within sim-outorder of

the SimpleScalar simulator [61]. Wattch calculates the energy accumulated over the cycles. We

modified the tool to track the instantaneous power for each functional block. We use HotSpot

model to calculate temperature, an efficient, architecture level thermal modeling tool [60].

HotSpot requires the floorplan of the underlying processor, from which the temperature for each

functional block is calculated, based on the instantaneous power values of corresponding blocks.

We take the temperature output from HotSpot to calculate leakage power using Equation 2.2.

The additional power due to error recovery circuits are included appropriately as reported by

[6]. We sample instantaneous power from Wattch every cycle and track temperature variations
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Parameter Value

Fetch width 4 inst/cycle

Decode width 4 inst/cycle

Issue width 4 inst/cycle (ooo)

Commit width 4 inst/cycle

Functional units 4 INT ALUs

1 INT MUL/DIV

4 FP ALUs

1 FP MUL/DIV

L1 D-cache 128K

L1 I-cache 512K

L2 Unified 1024K

Technology node 45nm

Voltage 1.25, 1.15, 1.00, 0.95V

Base frequencies w.r.t voltages 2536, 2475, 2402, 2316MHz

No. of freq levels per voltage 32

Critical Temperature Tc = 363K

Initial Temperature 333K

Temperature sampling 1ms

Freq sampling 10µs

Voltage penalty 100µs

Freq penalty Single PLL: 10µs

Dual PLL: 0µs

Table 3.1 Simulator parameters

in HotSpot. We make use of dynamic thermal variations for our feedback control. We use

transient analysis for our experiments rather than steady state analysis. We establish our

experiments with current state of the art by designing our simulations for the 45nm technology.

We adopted the scaling parameters from the parallel multicore version of the SimpleScalar

PowerPC simulator [62, 63].

3.2.2 Incorporating Timing Errors

We bring in the aspects of timing speculation in the SimpleScalar simulator from a hardware

model. We used the Illinois Verilog Model (IVM) - a Verilog RTL implementation of the Alpha

microprocessor. Since the IVM is not fully synthesizable, we had to synthesize and evaluate the

individual pipeline stages. We used the 45nm OSU standard cell library for timing estimation
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Figure 3.2 Simulation framework depicting feedback control of timing er-

rors and temperature for clock tuning

[64]. Figure 3.4 shows the cumulative error rate for SPECINT2000 suite. We noticed around

89.17% of the paths fail in the issue stage at 3.5ns, which causes a sudden rise in error rate.

As IVM does not support float, we instrumented SPECFP2000 instructions and performed

timing analysis for FP ALU obtained from opencores.org. We incorporate these reported error

rate values in our functional simulator.

3.2.3 Incorporating Feedback Control System

With this extensive simulation framework environment, we propose to experimentally val-

idate the claims of DVARFS scheme. Our goal here is to show that controlled reliable over-

clocking is indeed a beneficial way to enhance performance taking into consideration about

thermal constraints.

3.3 Evaluation and Results

In this section we present the results of our simulation studies. Our goals in this evaluation

are as follows:

1. To analyze the performance of the DVARFS with processor having no thermal control
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Figure 3.3 Timing error analysis for selected SPEC workloads

(Simple), traditional DVFS (DV FS), Reliably Overclocked Processor (rop), and Ther-

mally throttled ROP (trop) schemes.

2. To examine the effectiveness of the thermal control in each of the above mentioned

schemes (henceforth called modes). And,

3. To perform a comparative study of the average power and energy dissipation for different

modes. In addition to this, we also measure energy delay product (EDP) and EDP delay

product (ED2).

For analyzing the thermal impact, we make a fair assumption that if the control scheme keeps

the peak temperature of the processor below critical limits, then it achieves the target lifetime

pertaining to it. We assume the critical temperature, Tc = 363K corresponding to 10 year

lifetime. All the normalized measures are relative to Simple mode.

3.3.1 Algorithms for Various Feedback Control Mechanisms

3.3.1.1 Base Case: Simple

We evaluate all the feedback control mechanisms relative to the base case of no thermal

control scheme. We run sim-outorder without any modifications and compare all the other
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Figure 3.4 Illustration of feedback control system flow diagram and the

main simulator loop in the framework. NOTE: The pipe stages

are illustrated in reverse order as it is modeled in sim-outorder

mode performances with respect to this run. This allows us to normalize the results with a

base system. We maintain the same processor configurations and technology parameters for all

the modes. During any thermal emergencies the system is allowed to work beyond the critical

limits. For the purposes of this study, we allow such scenarios to occur to get to know how

effective the other thermal control methods are.

3.3.1.2 Dynamic Voltage and Frequency Scaling: DV FS

We implemented DVFS mechanism for thermal control in our simulation. The pseudocode

to implement this scheme is given in Algorithm 1. When executing in this mode, the temper-

ature is sampled once in several cycles, depending on the interval length. During temperature

sampling intervals, this module checks if the maximum processor temperature (maximum tem-

perature among all the functional blocks) exceeds the predefined critical temperature. If so,



www.manaraa.com

34

the voltage controller is called to reduce the operating voltage one level below the present

level. The voltage controller correspondingly re-assigns the clock frequency to the base level.

If the processor is already running at the lowest possible voltage level, a ‘Panic’ signal is raised.

During other times, when temperature is below the critical limits, the voltage level is increased

one level up. Again, the frequency is increased to the new base frequency.

Algorithm 1 Traditional DVFS; can be modified into Razor by changing

V F PAIR[]

if ((sim cycle− sim cycle oldv) > V cycles) then

sim cycle oldv = sim cycle;

if ((max current temperature > Tcritical)) then

if (vlevel > 0) then

vlevel −−;

new voltage = V OLTAGE[vlevel];

new frequency = V F PAIR[vlevel];

dvfs(new voltage, new frequency);

V penalty(new frequency);

else

signal(PANIC); // Temperature exceeded at minimum voltage level; Nothing Can be

done!

end if

end if

else

if (vlevel < (LEV ELS − 1)) then

vlevel + +;

new voltage = V OLTAGE[vlevel];

new frequency = V F PAIR[vlevel];

dvfs(new voltage, new frequency);

V penalty(new frequency);

else

signal(PANIC); // Already at Max Voltage; Nothing Can be done!

end if

end if

3.3.1.3 Reliably Overclocked Processor: rop

In this mode we do not incorporate any thermal control mechanism. We replicate the same

functionalities as SPRIT3E through controlled overlocking. We keep track of the predefined,
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programmable timing error set point. If the error rate reaches the set point frequency is

increased. Otherwise, it is decreased. This mechanism is shown in Algorithm 2. The algorithm

calls the subroutine, FREQUENCY TUNING(). This module takes care of calculating the

next frequency level depending on the error rate. The pseudocode for this is described in

Algorithm 3. Frequency is tuned up if the parameter passed is +1, and tuned down if it is −1.

Note that although the algorithm involves three modes (ARFSMODE), we only implement

mode ARFSMODE = 1 for rop.

Algorithm 2 DFS without thermal control; SPRIT3E like

if ((sim cycle− sim cycle old) > Fcycles) then

sim cycle old = sim cycle;

if (timing error counter > ErrorLimit) then

FREQUENCY TUNING(−1)

else

FREQUENCY TUNING(+1)

end if

end if

Algorithm 3 Dynamic frequency tuning: FREQUENCY TUNING(tune)

// Takes parameter ±1

if (ARFSMODE == 1||ARFSMODE == 2) then

if (x == +1)&&(flevel < FLEV EL− 1) then

flevel + +;

else if (x == −1)&&(flevel > 0) then

flevel −−;

end if

else if (ARFSMODE == 3) then

if x == +1 then

flevel = BINSRCH(flevel, FLEV EL);

else if x == −1 then

flevel = BINSRCH(0, f level);

end if

end if

Fpenalty(new frequency); timing error counter = 0;
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3.3.1.4 Thermally Throttled ROP: trop

In order to bring in thermal control in reliably overclocked processor, the most straightfor-

ward solution is to introduce frequency throttling during thermal emergencies, which is what

we adopt. From Algorithm 4, it can be observed that the only point where this method differs

from rop is while checking the condition. Here, there is an additional checking condition for

maximum processor temperature. Further, to keep the control scheme simple, we assumed

same sampling interval for thermal sensors and error counter.

Algorithm 4 Thermal control with only DFS (NO DVS/DVFS); Thermal

control in SPRIT3E

if ((sim cycle− sim cycle old) > Fcycles) then

sim cycle old = sim cycle;

if ((max current temperature > Tcritical)||(timing error counter > ErrorLimit))

then

FREQUENCY TUNING(−1)

else

FREQUENCY TUNING(+1)

end if

end if

3.3.1.5 Dynamic Voltage, Aggressive and Reliable Frequency Scaling: dvarfs

In DVARFS, there are mainly two control mechanisms involved, as mentioned before. The

procedure is described in Algorithm 5. The thermal control loop checks for the sensor tem-

perature during every sampling interval. If the temperature exceeds critical temperature, the

voltage is stepped down. Otherwise, it is stepped up similar to DVFS. If the temperature

exceeds the critical limits even at the lowest voltage level, then we start to step down fre-

quency to the lowest level, disabling overclocking. This is a distinguishing feature of DVARFS

compared to DVFS. In the cases where the temperature is below critical limits, we still have

opportunity to improve performance through overclocking. In those cases, we keep track of

the timing error counter separately and call the FREQUENCY TUNING() sub-routine ac-

cordingly. We implement three modes (ARFSMODE) while doing frequency scaling, namely,
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ARFSMODE = 1 or low-to-high frequency scaling (lohi), ARFSMODE = 2 or high-to-low

frequency scaling (hilo), and ARFSMODE = 3 or binary search frequency scaling (bin),

based on how we switch from one frequency level to the next. In lohi, the DFS is similar

to that in rop, where we start at the lowest frequency level and progressively move to higher

frequency if timing error occurrences are under the control limit. Mode hilo is just opposite

of lohi. hilo is a very optimistic approach where we start at the highest frequency level and

progressively step down until error rate is under threshold. In bin, we employ a binary search

algorithm to find the optimal frequency level.

Algorithm 5 Dynamic voltage, aggressive and reliable frequency scaling

if ((sim cycle− sim cycle oldv) > V cycles) then

sim cycle oldv = sim cycle;

if ((max current temperature >= Tstepdown)) then

if (vlevel > 0) then

vlevel −−;

V penalty(newfrequency);

else

signal(PANIC); //Temperature Exceeded at Minimum Voltage Level; Bringing Fre-

quency Down!

FREQUENCY TUNING(−1)

end if

else

if (vlevel < (LEV ELS − 1)) then

vlevel + +;

V penalty(new frequency);

end if

end if

else if ((sim cycle− sim cycle old) > Fcycles) then

if (timing error counter > ErrorLimit) then

FREQUENCY TUNING(−1)

else

FREQUENCY TUNING(+1)

end if

end if

We simulated six SPEC INT 2000 workloads, namely bzip2, crafty, gap, gzip,mcf and
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vpr and seven SPEC FP 2000 workloads, namely applu, apsi, equake, galgel, lucas,mesa and

mgrid, to analyze the experiments with the system deploying the DVARFS scheme. For all the

modes that involves timing speculation, we assume the timing error set point to be 5%. That

is, we do not allow more than 5 timing errors in 100 cycles. The initial steady state thermal

states are assumed to be same, and equal to Simple scheme. All other simulator parameters

are illustrated in Table 4.1.

3.3.2 Performance

From Equation 3.3, we measured the speed up for all the modes with simple mode as base.

The speed-up charts are illustrated in Figure 4.3. In general, integer workloads perform better

compared to FP workloads due to lesser computational density of the former over latter. It is

evident that DVARFS in general performs better than simple and other schemes. Especially,

hilo outperforms all other schemes across all workloads. This is because hilo starts with the

maximum frequency and slows down according to the error occurrences. bin performs mod-

erately well, with performance gain across all workloads. lohi performs well for few integer

workloads, viz., bzip2 and gzip. However, the loss of performance in lohi mode is found to

be not more than 3% in both integer and floating point workloads. This suggests that typical

workloads (integer and floating point) tend to have very low occurrences of timing violations

that show up as errors for most of the operating frequencies (past worst-case limits). This is

quite evident from hilo performance. It is because of the same reason that bin shuttles between

acceptable and unacceptable frequency ranges leading to lower performance improvement com-

pared to hilo. For lohi, by the time it reaches optimal frequency, it has already lost the much

of the chance for performance enhancement. Moreover, in this time the processor will also

eventually approach thermal emergency causing voltage scaling. This happens over and over

throughout execution resulting in a very small opportunity for enhancement. Using DVARFS

it is possible to achieve up to 40% performance improvement including the stall cycles for the

5% error rate.

The most widely accepted power management scheme, DVFS (dvfs), suffers a moderate
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performance loss around 4 − 5% across all workloads. This is a smaller number compared to

the typical dvfs, as we consider only thermal emergencies to be the controlling factor (DVFS

is generally applied for controlling power/energy dissipated within a budget).

Reliable overclocked processor (rop) performs best only next to hilo. It is normally expected

that rop to outperform all the other modes, as it does not involve thermal control loop. The

only thing to restrict its performance is the frequently occurring timing errors. Actually, the

lower speed-up compared to hilo is majorly due to the fact that rop considered here is the

simple ROP [65] which works similar to lohi. An improved version of ROP is possible and can

be expected to perform better than other modes, but is beyond the scope of the thesis.

We tried to bring in thermal control in ROP (trop) where the frequency is throttled during

both timing errors and thermal emergencies. However, results show that there is a significant

performance loss by doing this. The performance loss reflects how often thermal emergencies

occur during workload running. It also shows that scaling voltage down is a more effective

way of controlling temperature for longer running time (cubic reduction in dynamic power as

opposed to linear reduction). Note that we assumed all the modes (wherever applicable) to run

for 5% target error rate [66]. trop has its own advantages, especially when processor lifetime

is the major concern in the absense of voltage scaling, as we shall see in the later part of this

section.

3.3.3 Power

The average power is normalized to simple mode as shown in Figure 3.6. It is quite

obvious why rop has power consumption a lot higher compared to all other modes, as rop

does not have a control loop for power or temperature. There is not much difference in

its behavior from integer to floating point workloads. Power consumption for DVARFS is

25− 30% lower compared to simple scheme. This shows how DVARFS, in addition to thermal

controlling scheme, is effective as a power management scheme. Among the three dvarfs mode,

bin dissipates the least power as the mode can easily switch between lower (safe) and higher

(unsafe) frequency ranges. lohi follows next, as it operates relatively at smaller frequencies
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most of the running time. hilo consumes higher power compared to the former two as it

spends most running time in highest frequency levels. However, it manages to converge to an

optimal range without affecting the overall power dissipation. dvfs saves up to 30% power.

It is important to note here that bin saves much more power than dvfs, and lohi performs in

par with dvfs. Although from speed-up perspective trop doesn’t add much, in terms of power

consumption trop performs as good as bin; in some cases saving more than what bin does.

3.3.4 Energy (PDP)

Power delay Product (PDP) measures the energy dissipated during execution. Again, the

PDP reported is the average PDP, normalized with respect to simple and is depicted in Figure

3.7. A quick look back, we observed that trop is one of the most efficient power saving modes.

However, the power delay product reveals that the delay costs much more than the power saved.

In other words, the energy consumed by trop now performs in par with rop, which again does

not save energy any more than simple mode. trop manages to consume 2 − 3% more energy

than rop itself across all workloads. It is very important to note here that DVARFS saves more

energy than DVFS (dvfs), the latter being the most widely used scheme for energy saving. lohi

saves as much energy as dvfs, while bin and hilo save much more. Quite evidently, DVARFS

outperforms all the other modes in optimizing the tradeoff between power and delay.

3.3.5 EDP

Energy Delay Product (EDP) is a widely used metric when the emphasis on delay is an

order higher than the power dissipated. In other words, EDP gives the tradeoff between energy

and delay. The EDP for all workloads are shown in Figure 3.8. In this, trop expends almost

50% more than simple mode in this trade off. Specifically, for integer workloads, crafty, gap,

mcf and vpr, trop touches the 50% mark. Similar is the case for all floating point workloads.

In the case of applu, trop expends almost 60% more EDP with respect to that of simple mode.

rop has lower EDP with savings around 20−25% compared to simple. In one instance, namely

for the integer workload bzip2, rop performs in par with dvfs. Interestingly, DVARFS modes



www.manaraa.com

42

 0

 0.5

 1

 1.5

 2

bzip2 crafty gap gzip mcf vpr

N
o
rm

al
iz

ed
 P

o
w

er
Normalized Power for SPEC Integer Workloads

simple
dvarfs:lohi:5pct
dvarfs:bin:5pct

dvarfs:hilo:5pct
dvfs

rop:5pct

trop:5pct

 0

 0.5

 1

 1.5

 2

bzip2 crafty gap gzip mcf vpr

N
o
rm

al
iz

ed
 P

o
w

er

Normalized Power for SPEC Integer Workloads

simple
dvarfs:lohi:5pct
dvarfs:bin:5pct

dvarfs:hilo:5pct
dvfs

rop:5pct

trop:5pct

Figure 3.6 Power chart for SPEC INT and FP workloads



www.manaraa.com

43

 0

 0.5

 1

 1.5

 2

bzip2 crafty gap gzip mcf vpr

N
o
rm

al
iz

ed
 P

D
P

Normalized PDP for SPEC Integer Workloads

simple
dvarfs:lohi:5pct
dvarfs:bin:5pct

dvarfs:hilo:5pct
dvfs

rop:5pct

trop:5pct

 0

 0.5

 1

 1.5

 2

applu apsi equake galgel lucas mesa mgrid

N
o
rm

al
iz

ed
 P

D
P

Normalized PDP for SPEC Floating Point Workloads

simple
dvarfs:lohi:5pct
dvarfs:bin:5pct

dvarfs:hilo:5pct
dvfs

rop:5pct

trop:5pct

Figure 3.7 PDP chart for SPEC INT and FP workloads



www.manaraa.com

44

have EDP savings better than DVFS. lohi performs better in the case of bzip2. For all the

other workloads, lohi saves as much as dvfs does. bin and hilo saves more than dvfs in all

the cases, with hilo outperforming bin. hilo consistently saves around 50% EDP savings for

all workloads and over 60% is reported for the integer workloads bzip2 and gzip.

3.3.6 ED2

ED2 is a metric that has recently gained popularity, especially among handheld and battery

operated devices. It is the product (trade off) of EDP and delay. The significance of this metric

is that it allows a voltage independent analysis. It has been shown in literature that this is

a better metric than the energy delay product, in a sense that optimal ED2 implies optimal

energy and delay [67]. Figure 3.9 illustrates the ED2 for all workloads. As the order of the

delay product increases, the percentage expended by TROP worsens. For ED2 metric, trop

consumes over 100% (in some cases, close to 150%) in ED2. From this we can infer TROP is

not a good solution for energy constrained systems. Surprisingly, rop performs close to dvfs.

In few instances, as in integer workloads, bzip2 and gzip, and, floating point workload, mgrid,

rop outperforms dvfs in terms of ED2. Once again, DVARFS performs the best compared to

other modes. lohi saves 40 − 50% ED2 compared to simple mode. hilo on the other hand

reports 60− 75% ED2 savings. bin performs in between lohi and hilo.

It is very interesting to note that DVARFS handles performance, power and energy based

metrics exceptionally well proving it to be a powerful technique to adopt in the future systems.

The most important thing to be noted here is that the trade off is well handled between

different modes of DVARFS suitable to the required metric we are interested in. In simple

terms, DVARFS possesses the advantages of DVFS and ROP and it is least affected by their

limitations, which helps it to suit for all kinds of systems from handheld devices to high

performance processors.



www.manaraa.com

45

 0

 0.5

 1

 1.5

 2

bzip2 crafty gap gzip mcf vpr

N
o
rm

al
iz

ed
 E

D
P

Normalized EDP for SPEC Integer Workloads

simple
dvarfs:lohi:5pct
dvarfs:bin:5pct

dvarfs:hilo:5pct
dvfs

rop:5pct

trop:5pct

 0

 0.5

 1

 1.5

 2

applu apsi equake galgel lucas mesa mgrid

N
o
rm

al
iz

ed
 E

D
P

Normalized EDP for SPEC Floating Point Workloads

simple
dvarfs:lohi:5pct
dvarfs:bin:5pct

dvarfs:hilo:5pct
dvfs

rop:5pct

trop:5pct

Figure 3.8 EDP chart for SPEC INT and FP workloads



www.manaraa.com

46

 0

 0.5

 1

 1.5

 2

 2.5

 3

bzip2 crafty gap gzip mcf vpr

N
o
rm

al
iz

ed
 E

D
2

Normalized ED
2
 for SPEC Integer Workloads

simple
dvarfs:lohi:5pct
dvarfs:bin:5pct

dvarfs:hilo:5pct
dvfs

rop:5pct

trop:5pct

 0

 0.5

 1

 1.5

 2

 2.5

 3

applu apsi equake galgel lucas mesa mgrid

N
o
rm

al
iz

ed
 E

D
2

Normalized ED
2
 for SPEC Floating Point Workloads

simple
dvarfs:lohi:5pct
dvarfs:bin:5pct

dvarfs:hilo:5pct
dvfs

rop:5pct

trop:5pct

Figure 3.9 ED2 chart for SPEC INT and FP workloads



www.manaraa.com

47

Figure 3.10 Voltage, frequency and error trace for SPEC INT (bzip2) and

FP (applu) workloads
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Figure 3.11 Temperature, MTTF and power trace for SPEC INT (bzip2)

and FP (applu) workloads



www.manaraa.com

49

Figure 3.12 PDP, EDP and ED2 trace for SPEC INT (bzip2) and FP (ap-

plu) workloads



www.manaraa.com

50

3.3.7 Comparative Study of DVARFS with Base Execution

Tables 3.2 and 3.3 show the mean minimum and maximum execution for all SPEC integer

and floating point workloads, respectively. In order to eliminate the bias we excluded the

initial warm up phase of execution and obvious outliers in the data set. We compare the

values of different metrics for each mode with that of simple and estimate the percentage

increase or decrease. The difference is represented as positive and negative signs. Gain or loss

is determined by the sign of the difference and metric itself. For instance, for a given mode,

a positive difference in frequency metric is considered as a gain as it supports performance

improvement, while that is considered as a loss if it had been a power related metric. We will

explain the significant data points in each metric for all the modes.

We observed that for integer workloads, voltage selection range is higher in DVARFS in

general than floating point workloads. Whereas, dvfs has the same switching range. lohi

and dvfs have similar profile with 8 − 24% lower voltage operating point. bin and hilo work

closely with respect to voltage switching. In the case of FP workloads, both bin and hilo spend

majority of time at the lowest voltage level. Evidently, rop and trop work at the same voltage

level as simple.

There is not any difference in the operating frequency of lohi in the integer workloads. It

gets worse in the case of FP. This explains the trivial performance contribution and overhead

suffered by lohi in the overall speed up. bin shifts between +12% to −10% in the case of

integer workloads. bin performs better for FP workloads. The gap between the maximum and

minimum is smaller in the case of hilo. It should also be noted that hilo provides significant

gain.

The 5% error margin is maintained throughout execution. Typically, the timing speculation

modes suffer 1 − 5% errors at the maximum. As already mentioned, temperature of simple

is around 380K and rop reaches the maximum of 395K, while all the remaining modes are

able to control the temperature within the set limit of 353K. As a result, there is a 23%

loss of device lifetime in the case of rop, and up to 70% gain is possible through any of the

temperature control technique.
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The minimum power savings for dvarfs is 16% as it is observed in the FP workloads and

a maximum of 50% is observed in the integer workloads. Significant savings is observed for all

the energy related metrics in the case of dvarfs modes. trop suffers from 100− 300% loss for

the energy based metrics.

Table 3.2 Comparing various performance metrics for non-overclocked, re-

liably overclocked processors and DVFS with DVARFS executing

SPEC2000 integer benchmarks

simple lohi bin hilo
Metric Max, Min %Diff Max, Min % Diff Max, Min % Diff Max, Min % Diff

Voltage (V) 1.25 - 1.15 -8 -1.05 -16 -1.05 -16
1.25 - 0.95 -24 -0.95 -24 -0.95 -24

Frequency (GHz) 2.50 - 2.50 - 2.80 12 3.25 30
2.50 - 2.50 - 2.25 -10 3.10 24

Errors - - ≤ 500 5 ≤ 100 1 ≤ 150 1.5
- - ≤ 50 0.5 ≤ 50 0.5 ≤ 50 0.5

Temperature (K) 380 - 358 -6 358 -6 360 -5
353 - 353 - 353 - 353 -

MTTF (Years) 6.5 - 11.0 70 11.0 70 11.0 70

Power (W) 25.0 - 20.0 -20 15.0 -40 18.5 -26
25.0 - 12.5 -50 13.0 -48 18.4 -26

PDP (×10−3J) 9.0 - 8.0 -11 5.5 -39 5.5 -39
9.0 - 5.5 -39 5.5 -39 5.5 -39

EDP (×10−6Js) 2.75 - 2.68 -3 2.50 -10 2.38 -13
2.75 - 2.50 -10 2.40 -12 2.38 -13

ED2 (×10−9 Js2) 1.25 - 1.20 -4 1.15 -8 1.00 -20
1.25 - 1.10 -12 1.12 -10 1.00 -20

dvfs rop trop
Metric Max, Min % Diff Max, Min % Diff Max, Min % Diff

Voltage (V) - - 1.15 -8 1.25 - 1.25 -
- - 0.95 -24 1.25 - 1.25 -

Frequency (GHz) - - 2.40 -4 3.10 24 2.25 -10
- - 2.25 -10 3.00 20 1.18 -52

Errors - - - ≤ 150 1.5 ≤ 250 2.5
- - - ≤ 50 0.5 ≤ 50 0.5

Temperature (K) - - 358 -6 395 4 358 -6
- - 353 - 353 - 353 -

MTTF (Years) - - 11.0 70 5.0 -23 11.0 70
- -

Power (W) - - 20.0 -20 30.0 20 18.0 -28
- - 12.5 -50 29.0 16 12.0 -52

PDP (×10−3J) - - 8.0 -11 9.0 - 10.0 11
- - 5.5 -39 9.0 - 9.5 5

EDP (×10−6Js) - - 2.70 -2 2.65 -4 6.50 136
- - 2.50 -9 2.65 -4 5.00 81

ED2 (×10−9 Js2) - - 1.24 -8 1.20 -4 5.00 300
- - 1.20 -4 1.20 -4 2.50 100
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Table 3.3 Comparing various performance metrics for non-overclocked, re-

liably overclocked processors and DVFS with DVARFS executing

SPEC2000 floating point benchmarks

simple lohi bin hilo
Metric Max, Min % Diff Max, Min % Diff Max, Min % Diff Max, Min % Diff

Voltage (V) 1.25 - 1.15 -8 0.95 -24 0.95 -24
1.25 - 0.95 -24 0.95 -24 0.95 -24

Frequency (GHz) 2.50 - 2.49 -1 3.00 20 3.30 32
2.50 - 2.30 -8 2.49 -1 3.20 28

Errors - - ≤ 250 2.5 ≤ 120 1.2 ≤ 130 1.3
- - ≤ 50 0.5 ≤ 50 0.5 ≤ 50 0.5

Temperature (K) 380 - 358 -6 358 -6 360 -5
353 - 353 - 353 - 353 -

MTTF (Years) 6.5 - 11.0 70 11.0 70 11.0 70

Power (W) 25.0 - 21.0 -16 15.0 -40 18.0 -28
25.0 - 13.0 -48 13.0 -48 17.0 -32

PDP (×10−3J) 9.0 - 8.0 -11 5.5 -38 5.5 -38
8.8 - 5.5 -37 5.0 -43 5.5 -37

EDP (×10−6Js) 2.75 - 2.78 1 2.50 -10 2.38 -13
2.75 - 2.50 -10 2.40 -13 2.38 -13

ED2 (×10−9 Js2) 1.25 - 1.20 -4 1.15 -8 1.05 -16
1.25 - 1.10 -12 1.13 -10 1.00 -20

dvfs rop trop
Metric Max, Min % Diff Max, Min % Diff Max, Min % Diff

Voltage (V) - - 1.15 -8 1.25 - 1.25 -
- - 0.95 -24 1.25 - 1.25 -

Frequency (GHz) - - 2.49 -1 3.10 24 1.50 -40
- - 2.30 - 3.00 20 1.35 -46

Errors - - - ≤ 130 1.3 ≤ 125 1.25
- - - ≤ 50 0.5 ≤ 50 0.5

Temperature (K) - - 358 -6 395 4 358 -6
- - 353 - 353 - 353 -

MTTF (Years) - - 11.0 70 5.0 -23 11.0 70
- -

Power (W) - - 20.0 -20 29.0 16 16.0 -36
- - 13.0 -48 28.0 12 13.0 -48

PDP (×10−3J) - - 8.0 11 9.0 - 9.0 -
- - 5.5 -37 8.8 - 8.8 -

EDP (×10−6Js) - - 2.70 -2 2.75 - 7.40 169
- - 2.50 -9 2.75 - 6.20 125

ED2 (×10−9 Js2) - - 1.24 -1 1.20 -4 5.10 308
- - 1.20 -4 1.20 -4 3.75 200
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Execution Traces

In the forthcoming parts of the chapter, we show how execution traces for various metrics

during run time for selected workloads. Figures 3.10, 3.11 and 3.12 depict the traces cycle by

cycle for half for the first half a million cycles. For explanation purpose, we illustrate only two

benchmarks here. We selected one each from SPEC INT and FP, namely, bzip2 and applu,

respectively. Execution trace for all the workloads are provided in Appendix A.

3.3.8 Voltage Trace

Figure 3.10 illustrates the voltage trace two instances of benchmarks. It is evident to note

that simple, rop and trop stay at 1.25V . All modes that have voltage control enabled switches

to 1.05V almost as as soon as execution starts, and never goes back to 1.25V (the highest

voltage level). dvfs and lohi switches between the remaining three levels, while bin and hilo

switches to the lowest voltage level (0.95V ) and stays there till the end of execution.

3.3.9 Clock Frequency Trace

The second part of Figure 3.10 illustrates the frequency switching profile during execution.

Again, simple stays at 2500MHz, which is the base frequency. dvfs fluctuates between only

two levels. There are only as many frequency levels as voltage levels in the case of DVFS.

Similar trend observed in the case of lohi. bin fluctuates back and forth. This is mainly due

to error rate and not thermal emergencies. hilo stays at the maximum frequency level under

tolerable error rate. The point to be noted here is that the overclocked frequency at the lowest

voltage level is still over the operating frequency of simple. Following is inferred from this:

1. Performance enhancement is achievable even at the lowest voltage

2. Timing error occurrence is tolerated even at highest frequency levels

rop performs similar to hilo. In spite of overclocking capability, trop has to operate at lower

frequencies so as to handle thermal emergencies. In due course of run time, it slowly converges

to a point where the optimal frequency for both temperature and performance is reached.
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3.3.10 Error Trace

Final portion of Figure 3.10 shows the error profile during execution. There are no errors

for simple and dvfs modes as they work at conservative frequency limits. Small spikes are

observed at constant intervals for rop, trop and all DVARFS modes. It is more profound in

lohi because of the frequent voltage switching. Every time voltage switches, the control loop

starts the frequency search afresh from the lowest level. In the case of bin and lohi there is not

much voltage switching during most part of execution. trop has a high spike for bzip2. Apart

from few spikes, the error occurrence is well controlled in trop.

3.3.11 Temperature trace

Temperature traces for all modes across all workloads are presented in Figure 3.11. Tem-

perature gradually climbs over 380K (simple) when left uncontrolled. It should be pointed

here that the break down temperature limit for digital circuit is close to 378K. We assumed

363K to be the critical temperature limit. rop exceeds 390K. DVARFS performs in par with

DVFS by effectively controlling temperature within critical limits. Interestingly, trop main-

tains the temperature as effectively as DVARFS and DVFS. This is an important point to be

considered, as TROP proves to be effective way of controlling temperature of the processor in

the absence of dynamic voltage scaling.

3.3.12 MTTF Trace

We tracked down the Mean time To Failure (MTTF) during execution using the models

described in Section 2.3.2 as shown in Figure 3.11. All the modes that control temperature

effectively reports MTTF over 10 years. simple ends up with MTTF close to 5 years, whereas

rop is around 3 years and has the least MTTF out of all the modes.

3.3.13 Power Trace

Power trace during workload execution is shown in Figure 3.11, third row. Quite intuitively,

rop dissipates the maximum power, close to 30W . It is to be noted that all the DVARFS
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configurations start with the same power state as rop since the initial voltage and frequency

settings are the same. Also, simple and dvfs start from the same level. We observed that

dvarfs soon adapts itself to the temperature requirements and performs in par with dvfs. We

see that there is not much power fluctuations in hilo, as opposed to lohi or bin. lohi fluctuates

the maximum. This is because, every time there is a power level switching, all the levels lohi

had gained is lost. Power level switching in dvfs and trop at regular intervals is also constantly

observed.

3.3.14 Energy Metric Traces

Figure 3.12 illustrates the profile traces of PDP, EDP and ED2, respectively, for the selected

integer and floating point workloads. dvfs and lohi shuttles between the high and low states

for all the three metrics. However, the gap between the levels is relatively reduced as it goes

from PDP, EDP to ED2. trop is affected the most by the delay product. hilo and bin have

more regular and stable profile throughout execution. Such is the case for simple and rop as

well, however, the magnitudes are way too higher.

3.4 Summary

One of the main hurdles in realizing timing speculation in practical circuits is their barrier

they pose towards harnessing power dissipation in nanoscale circuits. Higher power density

escalates chip temperature, which is a serious threat. In this chapter, we presented an overview

of power impact on chip temperatures and analyzed its effect on lifetime reliability. We consid-

ered a typical reliable overclocking framework and studied its thermal behavior compared to

worst case design. We made the case for the need of a powerful thermal management scheme

in reliably overclocked circuits.

We presented an efficient technique for enhancing performance and managing on-chip tem-

perature by allowing dynamic voltage-frequency pairing. We built a feedback control system

called DVARFS, exploring a new direction to manage on-chip thermal conditions to achieve

maximal performance benefits. The DVARFS mechanism is an aggressive yet reliable frame-
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work for energy efficient thermal control. DVARFS facilitates to reliably overclock the proces-

sor under thermal bounds at target lifetime with a programmable error rate. We established

an extensive simulation framework environment, integrating various tools to perform our simu-

lation studies. Using this framework we have shown that it is possible to achieve power savings

in par with existing DVFS scheme despite exceeding the worst-case operating frequency. The

significance of this approach is that the system operates under controlled power, under a given

temperature set point and still yield performance enhancement. With this aggressive approach,

we were able to achieve up to 40% speed-up compared to a base scheme with no overclocking.

We also compared other metrics against different schemes and found that DVARFS invariably

performs better. We observed 75% ED2 savings relative to base architecture. In comparison,

DVFS only saves only about 40%. From our investigation, it becomes evident that controlled

reliable overclocking is indeed a beneficial way to enhance performance taking into considera-

tion about thermal constraints.
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CHAPTER 4. MANAGING CONTAMINATION DELAY

Timing Speculation (TS) is a widely known method for realizing better-than-worst-case

systems. Aggressive clocking systems have TS as their central theme and operate at a clock

frequency range beyond specified safe limits, exploiting the data dependence on circuit critical

paths. However, the margin for performance enhancement is restricted due to extreme dif-

ference between short paths and critical paths. In this chapter, we show that increasing the

lengths of short paths of the circuit increases the margin of TS, leading to performance im-

provement in aggressively designed systems. We develop an algorithm to efficiently add delay

buffers to selected short paths while keeping down the area penalty. We explore the possibility

of increasing short path delays further by relaxing the constraint on propagation delay, and

achieve even higher performance.

4.1 Background

Microprocessors have traditionally been designed to function reliably for the worst case

timing delays under adverse operating conditions. Such worst case scenarios occur rarely,

allowing possible performance improvement by making common cases faster. Alternative to

conventional methods, the concept of latching data speculatively is called Timing Speculation

(TS) [68, 65, 6, 69, 4, 3]. Dual latch based TS is a widely accepted methodology for designing

better-than-worst-case digital circuits. Timing speculation combined with timing error toler-

ance is a powerful technique to (1) achieve energy efficiency by under-volting, as in Razor [6],

or (2) performance enhancement by overclocking, as in SPRIT3E [65]. They are less expensive

in terms of area and power compared to logic replication.

Dual latch based TS require additional clock routing for replicated latches (or flip-flops)
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that are triggered by a phase shifted clock. Despite the area and routing overheads, the benefits

achieved by dual latched TS remain immense [6, 32, 3, 70, 71, 72, 73]. However, in [3] it has been

pointed out that the timing benefits realized through speculation is limited by the short paths

of the circuit due to the tight timing constraints in order to guarantee correctness during error

recovery. This problem is compounded when circuits have a significantly lower contamination

delay. It has been shown that for a CLA adder circuit significant performance enhancement is

achieved when its contamination delay is increased by adding buffers, increasing the delay of

all the paths in the circuit above a desired lower bound, while not affecting the critical path

of the circuit is one of the steps performed during synthesis of sequential circuits to fix hold

time violations. However, increasing the contamination delay of a logic circuit significantly,

sometimes as high as half the propagation delay, without affecting its propagation delay is not

a trivial issue [74]. At first glance, it might appear that adding delay by inserting buffers to

the shortest paths will solve the problem. However, delay of a circuit is strongly input value

dependent, and the structure of the circuit plays a role in deciding the value of an output in a

particular cycle. Current synthesis tools support increasing the delay of short paths through

their hold violation fixing option; in a broader sense, what we essentially want to do is that to

extend the hold time of the replicated register.

Traditional delay optimization approaches consider only part of the problem, viz., to ensure

that the delay of each path is less than a fixed upper bound. The closest work we are aware of is

presented in [75], which uses timing optimization algorithm, Sylon-Dream Level-Reduction, for

speeding up multi-level networks. The non-critical paths are processed by an area reduction

procedure to reduce network area without increasing the maximum depth. SDLR uses the

concept of permissible functions in both level and area reduction processes. The existing

techniques only attempt to confine the critical path delay under design specified threshold.

For aggressive timing speculative architectures, in addition to the existing short path timing

constrains free of any hold time violations, the delay optimization algorithms must make sure

that the short paths must satisfy threshold requirements in order to increase the performance

enhancement margin. This is the aspect that makes our work different from any of the existing
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works. Our work is aimed at increasing the contamination delay of digital circuits up to a given

threshold, beyond satisfying hold time violations.

We address three significant issues pertaining to short paths in timing speculation architec-

ture. First, we investigate theoretical analysis of a dual latch TS framework and quantize the

margin for performance enhancement by operating beyond worst case. Second, we study the

impact of short paths on performance on Alpha processor core, where we present a sensitiv-

ity analysis of the speed-up achievable for different settings of contamination delays. In that

process, we establish a case for increasing contamination delay of circuits for aggressive archi-

tectures to relax the margin for performance enhancement. Third, we develop an algorithm

to achieve this goal. Specifically, we build a weighted graph model to represent a multi-level

digital circuit. We showcase a new min-arc algorithm that works on the graph network to

increase short path delays by adding buffers to selective interconnections. We consider each

interconnection, whether it lies on the critical path, short path, or not. Depending upon how

far each section of the circuit is from the maximum and minimum delayed paths, fixed delays

are added. The algorithm is evaluated on ISCAS’85 benchmark suite. In our simulations, we

investigate the increase in short path delays with and without relaxing critical path delays of

these circuits. Also, we analyze the area overhead due to the addition of delay buffers. We

were able to increase the contamination delay to 30% of the circuit critical path length without

affecting its propagation delay. We further increase the contamination delay by relaxing the

constraint on the propagation delay by allowing it to be increased by a small amount for a

larger gain in performance.

4.2 Existing Works for Managing Circuit Path Delay

Early works on timing verification involved identification and categorization of long paths

as either false paths or sensitizing paths [76]. Long paths that are false paths (paths with no

activity) unnecessarily increase the circuit critical delay. Therefore, detecting false paths and

mitigating them is a critical issue in digital circuits even to this day [77, 78, 79].

As already mentioned in Section 4.1, not many works are done keeping short paths in mind.



www.manaraa.com

60

Sylon-Dream accomplishes faster multi-level networks by its level reduction technique (SDLR)

[75]. The non-critical paths are processed by an area reduction procedure to reduce network

area without increasing the maximum depth. SDLR uses the concept of permissible functions

in both level and area reduction procedures. Gate resizing and buffer insertion are two major

techniques for critical path optimization. Critical path selection instead of sensitization is

suggested for performance optimization [80]. Here the objective is to select a small set of

paths to ease the optimization process by guaranteeing the delay of the circuit to be no longer

than a given threshold. Several optimization techniques, involving clustering, logic analysis

and gate resizing are proposed in [81, 82, 83, 84, 85]. A statistical timing analysis approach

is investigated in [86]. A re-timing and re-synthesis approach is presented in [87]. This work

suggests re-synthesizing the circuit to expose signal dependencies. The optimization scheme

tightly constrains logic re-synthesis, so that the re-synthesized circuit is guaranteed to meet

the performance target.

Although there are several delay optimization approaches proposed in literature, all of

them try to hold the critical path delay within a threshold. It is fundamental that all the

timing optimization algorithms must consider short path timing constraints. Data latches in

a pipelined architecture inherently possess set up and hold time constraints. It is necessary to

make sure that the resulting circuit has no set-up or hold time violations, to guarantee correct

data transfers. There are algorithms to make sure the circuit is free of any such violations

considering both long and short paths [88]. However, there is hardly any consideration for short

path constraints from the perspective we are dealing with. In this work, we try to alleviate

the contamination delay limitation imposed on aggressive timing speculation architectures.

Therefore, we differ from any of the existing works fundamentally. As far as we know, this

is the first work aimed at increasing the contamination delay of digital circuits up to a given

threshold. It is also important to point out that our algorithm works complementary to existing

synthesis schemes.
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4.3 Timing Speculation Circuits

Traditional design methodologies for the worst-case operating conditions are too conserva-

tive as the critical timing delays rarely occur in tandem, during typical circuit operation. Such

infrequent occurrence of critical timing delays has opened a new domain of study that allows

improvement of processor performance to a greater extent. During execution, since delay in-

curred by the digital circuit is much less than the worst-case delay, this can be exploited by

making common cases faster. Timing speculation is a technique wherein data generated at ag-

gressive speeds are latched and sent forward speculatively assuming error free operation. Error

detection is deployed to detect a timing violation. When an error is detected, the forwarded

data is voided and the computation is performed again as part of the recovery action.

WCCLK

Stage i LFDR

MAINCLK PSCLK

Data 
in

Data 
out

Stage Error
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Figure 4.1 (a) Typical pipeline stage in a reliably overclocked processor (b)

Illustration of aggressive MAIN and PS clocks for circuits with

different contamination delays

4.3.1 Dual Latched Timing Speculation Framework

Let us recall the dual latched timing speculation framework (LFDR) from Chapter 2.

Figure 4.1 (a) presents a black box view of the LFDR circuit in between two pipeline stages.

As it was mentioned previously, to be able to reliably overclock a system dynamically using

LFDR framework, the foremost requirement is to generate the MAINCLK and PSCLK . The
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two clocks are governed by certain timing requirements that are to be met at all times. LFDR

consists of two registers: a main register clocked ambitiously by MAINCLK at a frequency

higher than that required for error-free operation and a backup register clocked by PSCLK at

the same rate as MAINCLK , but phase shifted such that the worst-case propagation delay

time of the combinational circuit. The timing diagram shown in Figure 4.1 (b) illustrates

this. Here, case (i) shows the worst case clock, WCCLK , with time period Φ1, which covers

the maximum propagation delay. Case (ii) shows TS scenario, where the clock time period is

reduced to Φ3. The key point to note is that the amount of phase shift, Φ2, for the PSCLK is

limited by the contamination delay, TCD, of the circuit.
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Figure 4.2 Timing diagram showing pipeline stage level timing speculation

Figure 4.2 shows timing waveforms that depict timing speculation using LFDR. In the

figure, inst0 moves forward without any timing errors. However, inst1 encounters a timing

error in Stage i, indicated by corrupted data “terr”. This error is detected by the error

detection mechanism, and the stage error signal is asserted. This stage error signal triggers a

local and global recovery. Timing error recovery flushes the data sent forward speculatively,

indicated in the figure as “xxx”, and voids the computation performed by Stage i+1. Once the

timing error is fixed, the pipeline execution continues normally. It is clear from the waveform

that the time gained by TS is Φ4, which is equal to Φ2.
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A balance must be maintained between the number of cycles lost to error recovery and the

gains of overclocking. One important factor that needs to be addressed while phase shifting

the PSCLK is to limit the amount of phase shift within the fastest delay path of the circuit.

4.4 Impact of Short Paths on Performance

The cardinal factor that limits frequency scaling for LFDR frameworks is the contamination

delay of the circuit. The phase shift of the delayed clock is restricted by the contamination

delay to prevent incorrect result from being latched in the backup register. Reliable execution

can be guaranteed only if the contents of the redundant register are considered “golden”. To

overcome this limitation, it is important to increase the contamination delay of the circuit.

From Figure 2.3 (b) case (iii) it is easy to notice that a circuit with contamination delay

T ′CD > TCD gives a greater margin for TS.

Let us denote the worst-case propagation delay and minimum contamination delay of the

circuit as TPD and TCD, respectively. Let TWCCLK , TMAINCLK and TPSCLK represent the

clock periods of WCCLK , MAINCLK and PSCLK , respectively. Let TPS represent the amount

of phase-shift between MAINCLK and PSCLK . Also we will denote TOV as the overclocked

time period.

At all times, the following equations hold.

TWCCLK = TPD =
1

FMIN
(4.1)

TMAINCLK = TPSCLK = TOV (4.2)

TPD = TOV + TPS (4.3)

Let FMIN be the setting where there is no overclocking i.e., TOV = TPD. In this case,

TPS = 0. The maximum possible frequency, FMAX permitted by reliable overclocking is

governed by TCD. This is because short paths in the circuit, whose delay determine TCD, can

corrupt the data latched in the backup register. If the phase shift TPS is greater than the TCD,
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then the data launched can corrupt the backup register at PSCLK edge. If such a corruption

happens, then the backup register may get incorrect result and cannot be considered “golden”.

Hence, it is not possible to overclock further than FMAX . The following equations should hold

at all times to guarantee reliable overclocking.

TPS ≤ TCD (4.4)

FMAX ≤
1

TPD − TCD
(4.5)

For any intermediate overclocked frequency, FINT , between FMIN and FMAX , TPS ≤ TCD.

During operation, FINT is determined dynamically based on the number of timing errors being

observed during a specific duration of time. The dependence of phase shift on contamination

delay leads directly to the limitation of the aggressive frequency scaling. A simplistic notion of

the maximum speed-up that is achievable through reliable overclocking is given by Equation

4.6.

Maximum Speedup =
TPD

TPD − TCD
(4.6)

4.4.1 Increasing Short Path Delays

It is clear from Equation 4.6 that the maximum speedup is achieved when the difference

between the contamination delay and propagation delay is minimal. However, it must be

noted that increasing TCD too much also affects the margin for overclocking. To overcome this

challenge, we develop a technique to increase the contamination delay by a moderate extent

without affecting the propagation delay of the circuit. As outputs of the combinational logic

depends on several inputs, and more than one path to each output exists, with both shorter

and longer paths overlapping, adding buffer delays to shorter paths would increase the overall

propagation delay of the circuit. The main challenge is to carefully study the delay patterns,

and distribute the delay buffers across the interconnections. More importantly, the overall

propagation delay must remain unchanged. However, it may not always be possible to constrain

propagation delay of the critical paths due to logic/interconnection sharing in the network.



www.manaraa.com

65

Most practical circuits have significantly lower contamination delay. For instance, we verified

that an 8-bit CLA adder circuit, implemented in 0.18µm Cadence Generic Standard Cell

Library (GSCLib), has a propagation delay of 1.06ns, but an insignificant contamination delay

of 0.06ns, thus allowing almost no performance improvement through reliable overclocking. It

should be noted that the outputs of CLA adder depends on more than one inputs, thus a

trivial addition of delay buffers to short paths results in increased propagation delay of the

circuit. However, by re-distributing the delay buffers all to one side (either input or output),

it was possible to increase contamination delay, without affecting the propagation delay, by up

to 0.37ns.

Increasing circuit path delay above a desired level without affecting critical path is not

uncommon in sequential circuit synthesis. In fact, it is performed as a mandatory step during

synthesis operation. In a sequential circuit, for an input signal to be latched correctly by an

active clock edge, it must be loaded (become stable) before a specified time. This duration is

called the set up time of the latch. Again, the input signal must be stable until a specified

time after the active clock edge in order to get sampled correctly. This interval is called the

hold time of the latch. Any signal change in the input before set-up time or after the hold

time does not affect the output until the next active clock edge. Clock skew, which is the

difference in arrival times at the source and destination flip-flops, also exacerbates hold time

requirements in sequential circuits. Hold time violations occur when the previous data at the

input of the destination flip-flop is not held long enough to be latched properly. The data can

change during the hold time window, if the contamination delay of the circuit is less than the

hold time requirements at the destination flip-flop. The hold time requirement for a sequential

circuit is normally a very small fraction of the propagation delay of the circuit. Hence, adding

buffers to short paths that violate hold time criteria is a step that is done without too much

of a concern regarding area and power overheads.

Increasing the contamination delay of a logic circuit significantly, sometimes as high as half

the propagation delay, without affecting its propagation delay is not straightforward [74]. At

first glance, it might appear that adding delay by inserting buffers to the shortest paths will
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Parameter Value

Fetch/ Decode/ Issue/ Commit width 4 inst/cycle

Functional units 4 INT ALUs, 1 INT MUL/DIV, 4 FP

ALUs, 1 FP MUL/DIV

L1 D-cache 128K

L1 I-cache 512K

L2 Unified 1024K

Technology node 45nm

Base frequency 2.5GHz

No. of freq levels 32

Freq sampling 10µs

Freq penalty 0µs (Assuming Dual PLL)

Table 4.1 Simulator parameters

solve the problem. However, delay of a circuit is strongly input dependent, and several inputs

play a role in deciding the value of an output in a particular cycle. Current synthesis tools

support increasing the delay of short paths through their hold violation fixing option; in a

broader sense, what we essentially want to do is to extend the hold time of the backup register.

Though it is possible to phase shift to a maximal extent, reducing the clock period by that

amount may result in higher number of errors. Having a control over the increase in contamina-

tion delay gives us an advantage to tune the circuit’s frequency to the optimal value depending

on the application and the frequency of occurrence of certain input combinations. Also, in-

troducing delay to increase contamination delay increases the area of the circuit. Therefore,

while judiciously increasing contamination delay we must also ensure that the increase in area

is not exorbitant.

4.4.2 Performance on Alpha Processor

To demonstrate the effect of increasing short paths on performance, we conducted a simple

study on Alpha processor model for different contamination delay settings. We ran selected set

of SPEC 2000 benchmark workloads on SimpleScalar - a cycle accurate simulator [59]. In order

to embed timing aspects in SimpleScalar, we examined a hardware model of Alpha processor

and obtained the number of timing errors occurring at different clock period, for each workload.
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(a)

(b)

(c)

Figure 4.3 (a) Cumulative error rate at different clock periods for the IVM

Alpha processor executing instructions from SPEC 2000 bench-

marks (b) Average error rate per clock cycle (c) Normalized

speed-up relative to reliably overclocked, unmodified circuit
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Figure 4.4 Normalized speed-up of bzip2, equake, and gap benchmarks for

different L and T configurations
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For this purpose we used the IVM synthesized in Chapter 3. Although we are aware of the

fact that the pipeline in IVM is simplistic, it does not have any impact on our results as we are

performing a comparative study of different settings for the same circuit. We adopt the same

configuration for SimpleScalar simulations as well. The details of the settings are presented in

Table 4.1. Figure 4.3(a) shows the cumulative error rate of three SPEC 2000 workloads for 32

equal intervals, for worst-case delay of 7ns and minimum contamination delay of 3.5ns. The

error profile illustrated is the average values obtained by running the experiment for 100, 000

cycles, and repeating the experiment with different sequences of 100, 000 instructions for each

workload.

We incorporated a timing error injector that induces appropriate number of errors in Sim-

pleScalar. Pipeline stall for one cycle per error occurrence is added correspondingly. As

increasing the contamination delay affects path distribution of the whole circuit, it is likely

that the overall error rate for each workload may go up. In our experiment, we assume uni-

form increase in error rate, denoted as Dev, for each workload. For our study, we typically

used Dev = 0, 3, 5 and 7%. Further, we analyze the performance impact of varying CDs with

different target error rates (Tgt). Figure 4.3(b) shows the error occurrence per cycle for bzip2,

equake and gap. Quite evidently, we observed smaller error occurrences for small/no deviation

of circuit, and the error rate tend to increase as the error rate due deviation, Dev, goes up.

However, a small increase in target error rate allows more margins for performance increase.

But, this may not hold true for higher error rates. In general, it was generally observed that

when Dev gets closer to Tgt, there was an increase in error occurrences. This is more noticeable

in the case of gap.

Since it may not always be possible to increase the contamination delay without affecting

the critical paths, we increase the CD to a threshold limit. As a result, we may end up

increasing the PD. We also experimented with increase in PD by allowing a leeway of a small

percentage of increase in PD. We study the speed-up obtained for different combinations of CD

threshold and PD leeway relative to the performance of aggressive clocking framework with

the original circuit. L 〈l〉 − T 〈t〉 denotes l% leeway of PD and t% minimum threshold of CD.
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We performed our study for l = 0, 10, 20 and 30% and t = 10, 20, 30 and 40%.

We found that in all the cases, performance goes up with threshold values, which is in

agreement with our intuition. In other words, increasing the short path delays allows more

margin for reliable aggressive clocking assuming a moderate target error rate occurrence. It

should also be noted that allowing a leeway on critical paths induces performance overhead.

Normalized speed-up trend of bzip2 workload for various modes of operation is exemplified

in Figure 4.3(c). We have illustrated the results for the modes that yielded performance

gains. The performance of bzip2, equake, and gap benchmarks, for all the configurations we

implemented is shown in Figure 4.4. From the point of view of leeway on PD, our investigation

on relative performance is summarized as follows:

• L = 0 is the best case scenario for performance benefits, yielding from 10−30% speed-up.

• 0 ≤ L ≤ 10 is the effective range for any performance benefits at all, irrespective of T

• L = 20% gives a small increase in performance in the range 0% ≤ Dev ≤ 7%

• L = 30% gives a little increase in performance for few cases in the range 0% ≤ Dev ≤ 5%

• L > 30% causes performance overhead even for higher values of T and smaller Dev

Our experiments reveal that by increasing the delays of short paths up to 40%, subject to

moderate increase in PD (typically 10%), yields up to 30% performance enhancement. Also,

it is very important to keep the increase in error rate due to circuit deviation within 5%. This

guarantees zero overhead even at maximum leeway (L = 30%).

This study establishes a case for change in the existing synthesis algorithms to incorporate

minimum path delay constraints. The major change in this revised algorithm is to increase

the short path delays without (or minimally affecting) the critical path delays of the circuit. A

secondary and passive constraint is to maintain the circuit variation (if not make it better), so

that the deviation causing increase in error occurrences is kept minimal. We will discuss more

on this constraint later. We provide a systematic approach to realize circuits with path delay

distribution that allows greater margin for aggressive clocking for performance enhancement.
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4.5 Min-arc Algorithm for Increasing Short Path Delays

After having a close look at various circuits, we understand that increasing short path delays

invariably increases the area of the circuit and, if not done carefully, affects its propagation

delay. An ideal solution that we would like is to have logic moved from the critical path to the

non-critical paths without using the specified components at the output terminals not getting

affected. This is not always possible. The next best approach would be to increase the delay

of short paths as much as possible without increasing the propagation delay, and keep the

area increase within a limit. As mentioned earlier, short path delays can be increased without

affecting propagation delay for carry look-ahead adders and other smaller circuits. However,

this is done manually, and the area overhead is very high for 64-bit adders. Minimizing short

path constraints, without increasing propagation delay may not be possible for many practical

circuits. In that case, we can allow a small increase in the propagation delay, if that increase

can allow higher margin for TS.

We introduce Min-arc algorithm for increasing contamination delay of logic circuits up

to a defined threshold. We adopt an approach closely resembling min-cut algorithm for flow

networks. The basic idea of the algorithm is to identify a set of edges, from here on we refer it

as the cut-set, such that adding a fixed amount of delay to the set does not affect the delays of

any long paths. However, an important difference between this and traditional flow networks

is that the cut-set for the Min-arc may not necessarily break the flow of the network. But

rather, the cut-set is a subset of edges in the actual (rather traditional) min-cut. The reason

why we do not consider a traditional min-cut is to not unnecessarily add delay buffers where

it is not needed. However, a subset of the min-cut edges is essential to keep the addition of

delays minimal. Another reason for increasing path delay in batches is to keep the structure

of the logic network unaltered from the original network. Benefits of maintaining path delay

distribution is explained in Section 4.6.

The basic outline of the Min-arc algorithm to increase the short path delay of the circuit up

to a required value is presented in Algorithm 6. The entire procedure is divided into six basic

steps, in which the first and last steps are one-time operations, converting the logic circuit to
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an equivalent graph network and vice-versa. The remaining parts of the algorithm modifies the

graph into a weighted graph network and iteratively updates the prepared network by adding

the necessary delay to the selected interconnection using the modified min-cut procedure. The

forthcoming portion of this section is devoted towards explaining each step in detail.

Algorithm 6 Steps for manipulating short path delay in logic circuits

STEP A: Convert combinational circuit to a graph

STEP B: Get minimum and maximum path through every edge

STEP C: Prepare graph for min-cut

STEP D: Do min-cut on the graph obtained in step 3

STEP E: Add delay to the edges returned by min-cut

STEP F: Update the graph and repeat Steps 2 through 6 until contamination delay is

increased up to the required value

STEP G: Convert the graph back to combinational logic circuit
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Figure 4.5 Illustration: Network model for 4-bit ripple carry adder. (As-

suming unit interconnect and logic delays)

4.5.1 Construction of Weighted Graph Network

The first step is to convert the given combinational logic into a directed graph, where the

logic blocks becomes the nodes, and the interconnections from each logic block to others form

the directed edges. The nodes and edges may be weighted depending on their time delays.

To this graph we add a source, S, from which edges connect to all the inputs, and a drain,
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Terms Definitions

MAX(i, j) Maximum path from node i to j, incl. i and j

MIN(i, j) Minimum path from node i to j, incl. i and j

MAX(S,D) Propagation delay of the circuit, TPD
MIN(S,D) Contamination delay of the circuit, TCD

e(i, j) Edge from node i to j

wt(i, j) Weight of edge from node i to j, not incl i and j

emax(i, j) MAX(S, i) + wt(i, j) +MAX(j,D)

emin(i, j) MIN(S, i) + wt(i, j) +MIN(j,D)

LWY Percentage of leeway (0-1) on critical path while adding buffer. E.g., LWY =

x% allows the target network to have TPD(1 + x) as the final propagation

delay

THD Normalized threshold (from TCD to TPD) below which we do not want any

short paths

INF A very large integer value

SCALE A moderate integer value, (> TPD), to scale the weight to a new range

func() A function dependent on TPD, TCD, emax(i, j) and emin(i, j). Returns

a real number, 0-1. In this work, we define this as

√
(emax(i,j)−THD)

(TPD−THD) ×√
(emin(i,j)−TCD)

(THD−TCD)

Table 4.2 Definitions

D, to which all the outputs connect. Note that there is a zero weight for S, D and all the

edges from/to them. Figure 4.5 illustrates an example network model for a 4-bit ripple carry

adder with S and D added. TPD and TCD of the logic circuit are highlighted in the figure.

It is necessary to preserve the node types whether they are logic gates, buffer delays, input

or output pins. Also it is important to note the type of logic for a logic gate node. This is

important in order to maintain functional correctness of the circuit.

4.5.2 Finding the Minimum and Maximum Path

Once the directed network is constructed, the next step is to mark the edge weights for

generating the cut-set. Before doing so, we introduce and define several terms and symbols as

illustrated in Table 4.2, which will be used in the remaining steps. We calculate the longest

and shortest distances for every edge from source and drain. That is, we obtain MAX(S, i),

MAX(j,D) MIN(S, i) and MIN(j,D) for every edge e(i, j) in the weighted graph. We
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use Djikstra’s algorithm to calculate MAX() and MIN() functions. From this, we calculate

emax(i, j) and emin(i, j) for every edge, e(i, j) as described in Table 4.2, which corresponds to

the longest and shortest paths of the logic network through that edge. The paths marking

emin(i, j) and emax(i, j) for randomly chosen nodes i and j for the 4-bit ripple carry example

is depicted in Figure 4.5. In a similar manner, the minimum and maximum weights for every

edge are calculated.

4.5.3 Preparing Graph for Min-cut

From steps B through F we re-construct the prepared weighted graph network as and when

we select a minimum weight interconnection to add the delay buffer. We re-construct the

graph from the previous state using new edge weights. The edge weights are calculated in such

a manner that the minimum weighted arc gives the most favorable interconnection where to

add delay. The procedure for calculating new weights for every edge, e(i, j), is described in

Algorithm 7. The edge, e(i, j) may fall under one of the four categories listed in the algorithm.

For the first two cases, the edge weight is calculated as the sum of emin(i, j) and emax(i, j). This

is the general scenario where the minimum and maximum paths are added as edge weights.

The former case is the scenario of a short path, where emax(i, j) is smaller than the threshold

for contamination delay. The latter case is when the selected edge, e(i, j), has a delay such that

the shortest path is more closer to the threshold than the longest path is to the propagation

delay. In other words, when a delay buffer is added to any edge in the path to increase the

short path delay by the given threshold, the maximum delay increase affecting a critical path

is still within propagation delay of the circuit. The third scenario is when the longest path

exceeds propagation delay including leeway. This edge is critical and by no means can buffers

be added to this. Hence, we substitute a large number (INF ) as the edge weight so that this

edge is never picked as part of the min-cut. Finally, we have a case when delay buffer addition

exceeds or gets very close to the propagation delay. In this case, we scale the edge weight

moderately higher than the original range. This addresses the case where addition of buffer to

any edge affects longer paths.
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4.5.4 Finding the Min-cut

K
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∞ 
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S D
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S D

∞ 

≥ THD

S D

(a) (b)

(c) (d)

Short paths independent of critical 
paths. Add buffers to short paths.

Short paths with common edges with longer paths 
(but not critical paths). Add buffers excluding the 
common edges.

Short paths having common edges with longer paths. 
There are no independent short paths. Add buffers to 
common edges. Longer paths may become critical paths.

All short path delays have 
reached the threshold value.

≥ THD

Figure 4.6 Illustration of four different scenarios finding the cut-set in

Min-arc algorithm

Once the graph weights are re-assigned, the cut-set is determined. We use a variant of

Edmonds−Karp min-cut algorithm of the graph network. The cut-set consists of edges with

minimum weight in the new graph. Figure 4.6 illustrates the different scenarios in determining

the cut-set. The cut-set re-definition is necessary because the traditional min-cut always has

at least one edge in the critical path. Figure 4.6(a) shows how a logic circuit is divided into

critical and non-critical paths. As long as the non-critical paths are independent of critical

paths, buffer delays can be added to the former ones. In this case, the min-cut excludes all

the critical paths. Generally, the scenario is not this straightforward. As illustrated in Figure
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4.6(b), the short paths are intertwined with longer paths that are not critical paths. In such

cases, the weights of the longer paths are scaled to a different range (in this case K). If there

is a subset of short paths that exist independent of the longer paths, buffer delays are added

to this subset. We noticed that this is the most common scenario in the benchmark circuits.

Once all the independent short paths have been added with corresponding delays, the new

circuit is left out with paths that are scaled as shown in Figure 4.6 (c). Buffer delay is added

to the scaled paths, which runs the risk of modifying longer paths into critical paths. The

final circuit is shown in Figure 4.6 (d), where there are only critical paths and paths that have

delay meeting the threshold requirements. In the ripple carry example, the case is similar to

Figure 4.6 (a). The cut-set is thus all the paths excluding the critical path. Figure 4.5 shows

the min-cut where the buffers are added.

4.5.5 Adding Buffer Delays

The buffers are carefully placed on edges where it would not affect the longest paths. Thus,

the amount of delay each buffer should have depends on the path connectivity, which may have

major impact on the timing error occurrence. For instance, it is possible to add delays such

that all the paths have delay equal to the critical path delay. In most practical circuits, pushing

all the paths to a certain delay interval would result in sudden rise in the timing errors, causing

overhead due to error recovery. So, it is always necessary to keep in mind while designing the

algorithm that there is a gentle rise in path delays from one interval to the other. Buffers are

added on the edges present in the cut-set. The amount of delay added, delay(i, j), for any

edge e(i, j) is given by Equation 4.7.

delay(i, j) = min((THD − emin(i, j)), (TPD − emax(i, j))) (4.7)

The delays for all the edges in a cut-set, for a given iteration, are added at the same time.

While adding delay, we ensure that in the same iteration, to no other edge the delay is added

that are connected to paths through this edge.
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4.5.6 Satisfying Conditions

We iterate steps B through F until the minimum condition for the shortest path is met

or until there is no other edge where delay can be added without affecting TPD of the circuit

(including LWY ). Step F checks if the desired value of contamination delay is reached. Once

the required conditions are met, no more buffer additions are carried out and we move on to

step G. From our experiments, we found that the minimum condition for contamination delay

is achieved for all the circuits we evaluated.

4.5.7 Converting Graph to Logic Circuit

The final step is to revert back to the original circuit once the short paths lengths are

increased to the desired level. Since we record the node types in the network graphs in step A,

it is possible to re-build the circuit from the graph network with the added buffers. It should be

noted that we do not optimize the logic of the circuit, whereas we only add additional buffers

preserving the original logic of the circuit.

Quantifying Min-Arc Algorithm

The time complexity of Min-arc algorithm is mainly affected by Steps B and D. Let |V |

be the total number of logic blocks (vertices) and |E| is the total number of interconnections

(edges) in the logic circuit. Using Djikstra’s shortest path algorithm, the worst case time to

calculate MAX() and MIN() functions is O(|V |2). For finding the minimum weighted edge

min-cut for the graph network, it takes O(|V ||E|2). In the worst case every edge becomes a

part of the cut-set. That is, there are at most |E| iterations. Hence, the overall time complexity

of the Min-arc algorithm is O(|V |2|E|+ |V ||E|3).

4.6 Evaluation of Min-arc Method

Although the time complexity of Min-arc algorithm is polynomial order, it is necessary

to consider its performance on practical circuits. We evaluate the algorithm on ISCAS’85

benchmark suite [89]. The suite provides a diverse class of circuits in terms of number of IOs,
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Algorithm 7 Re-calculation of edge weight for edge emax(i, j)

1: if emax(i, j) ≤ THD then

2: wt(i, j) = emin(i, j) + emax(i, j)

3: else

4: if (THD − emin(i, j) < (TPD − emax(i, j)) then

5: wt(i, j) = emin(i, j) + emax(i, j)

6: end if

7: else

8: if emax(i, j) > (TPD(1 + LWY )) then

9: wt(i, j) = INF

10: end if

11: else

12: wt(i, j) = SCALE ∗ func()
13: end if

logic gates and interconnections (nets). Table 4.3 lists a brief description and other relevant

details of the circuits. All the circuits were transformed into network graphs as specified in

Section 4.5. The interconnect delays and logic cell delays were obtained by synthesizing the

circuits for 45nm technology using OSU standard cell library [64]. All the configurations

(L 〈l〉 − T 〈t〉) described in Section 4.4.2 were investigated.

Circuit Description Inputs Outputs Gates Nets Area(Buf)

c432 27-channel interrupt controller 36 7 205 386 5360.698

c499 32-bit SEC circuit 41 32 277 513 7821.103

c880 8-bit ALU 60 26 471 841 11791.877

c1355 32-bit SEC circuit 41 32 621 1169 17166.807

c1908 16-bit SEC/DED circuit 33 25 940 1581 24947.760

c2670 12-bit ALU and controller 233 140 1644 2665 36016.406

c3540 8-bit ALU 50 22 1743 3033 49139.693

c5315 9-bit ALU 178 123 2610 4810 71726.222

c7552 32-bit adder/comparator 207 108 3830 6568 101953.107

Table 4.3 Area increase in terms of buffer delay (ps)

Interesting results were noted in this study. First, for all the circuits, the Min-arc method

was able to increase the short path delays to the desired threshold levels without any leeway

on PD. Even then, we continued with all the configurations to include leeway in order to study

the effect of including them. We present the results only of a few selected circuits and average
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Figure 4.7 Charts showing increase in contamination (short path) delay of

circuits (Part 1/2)
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circuits (Part 1/2)
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of circuits (Part 2/2)



www.manaraa.com

83

of all circuits. It was found that circuit characteristics (i.e., size and connectivity) have strong

effects on how the algorithm performs. Figures 4.7, 4.8, 4.9, and 4.10 illustrate the increase

in the short path delays, and critical path delays, respectively, for different configuration in

c432 and c5315 circuits. The charts also show the average increase of these delays for all nine

circuits. For smaller circuits (as in c432), we notice that there is not much the algorithm could

possibly do, as there is a higher chance of affecting the critical path by adding delay to any

net. In c432, we notice that the maximum delay increase of short paths from the base circuit

with 91ps, (with 0% leeway) is around 225ps. However, in larger circuits (as in c5315), delay

buffers were more easily added. This is seen in c5315, where short path delay is increased

from 20ps to 430ps, again with 0% leeway. In other words, as the circuit size increases, the

number of independent short paths also becomes more, allowing easy inclusion of delay buffers.

It should also be noted that there is not much delay increase from L0 to L5 or other higher

levels of leeway on PD. Increasing threshold on the other hand tend to have a great impact in

increasing the CD. On an average, there is a 1.5× factor of increase from one threshold level

to the next for all configurations. Assuming LWY = 0, we were able to achieve 300%− 900%

increase in CD, and increasing LWY steadily from 5 to 30%, we observed increase of CD in

a saw tooth pattern achieving 315% − 1165% increase in CD. It should be observed from the

critical path delay patterns that the algorithm strictly adheres to the critical delay limits.

One major effect of adding buffers to circuits is that it affects path delay distribution.

Although our goal is to increase the CD to a threshold limit, pushing a set of paths to one side

may increase the timing error rate during execution. Therefore, it is important to maintain

the delay distribution of the circuit paths without much deviation. For all the circuits we

tested, Min-arc algorithm was able to closely maintain the path delay distribution. In most

cases, while adding delay buffers, it was possible to shift all the delay intervals to a new level,

thereby maintaining the circuit structure as much as possible. Even though the structure

of the circuit is maintained, the short paths are now pushed to higher delay slots, thereby

increasing the possibility of error occurrences. This corresponds to Dev, mentioned in Section

4.4. However, we expect the increase in error rate to be a nominal value.
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Figure 4.11 Path delay distribution from CD to PD for c432 and c7552
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Figure 4.12 Average path delay distribution, in terms of mean and devia-

tion (Part 1/2)
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Figure 4.13 Average path delay distribution, in terms of mean and devia-

tion (Part 2/2)
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Figure 4.11 illustrates the path delay distributions for selected configurations of two circuits

(c432 and c7552). We noticed that for c432 (and other smaller circuits), the path structure were

mostly maintained. In the case of c7552 (and other larger circuits), the circuit structure was

altered moderately. To illustrate this point further, we plotted mean and standard deviation of

all the circuits. Figures 4.12 and 4.13 showcase the distribution plots of each of the circuit and

average of all the circuits. We noted that the smaller circuits suffer from negligible deviation

from original circuit in spite of higher mean, and the larger circuits are vulnerable to change

in structure. From the average plot, it is also evident that higher leeway values cause more

deviation. A maximum deviation of −12% and +16% were observed for T30L0 and T30L30

configurations, respectively.

4.6.1 Area overhead

The overhead for Min-arc algorithm is the area penalty. More the circuit allows adding

buffers, more the overhead in chip real estate. We estimate the original circuit area in terms

of buffer delays, and compare the area increase for each of the configurations. This study

facilitates us to narrow down the choices of L and T for any given circuit. Table 4.4 enlists the

percentage area increase for various L and T combinations, for all the circuits. It is important

to choose the configuration that has highest increase in delay with moderate increase in area.

Without any leeway (corresponding to L0), with every 5% increase in T there is around

20% increase in area. This holds for most circuits, except for smaller circuits as in c499 and

c880, where it is around 10%. A maximum of 100% increase is observed for c2670 at T = 30%.

For this maximum threshold, there is a wide range of area increase across the benchmark

circuits. We did not see any strong relation between circuit size and the area increase. This

means that it is the circuit connectivity that has a major role to play on buffer placements.

For T = 30%, the minimum area increase of around 10% is observed for the circuit c3540.

A general observation from our study is that the area increases with L or T . However, we

observed quite a few configurations, where the area decreases with L or T . This reflects how

the algorithm handles different input combinations independently, rather than building from
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Ckt L0 L5 L10 L15 L20 L25 L30

c432 T10 000.000 000.000 000.000 000.000 000.000 000.119 000.338
T15 002.233 001.884 002.306 002.727 003.149 003.570 003.992
T20 010.911 014.424 005.738 006.441 007.186 008.029 008.872
T25 027.913 034.655 010.918 012.148 012.244 013.380 014.610
T30 055.948 062.209 070.731 019.970 020.029 019.528 021.004

c499 T10 001.295 002.278 003.262 004.246 005.229 006.213 007.196
T15 011.131 012.606 014.082 015.557 017.032 018.508 019.983
T20 020.967 022.934 024.901 026.868 028.836 030.803 032.770
T25 030.803 033.262 035.721 038.180 040.639 043.098 045.557
T30 040.639 043.590 046.540 049.491 052.442 055.393 058.343

c880 T10 000.875 001.076 001.338 001.673 002.009 002.371 002.773
T15 004.642 005.397 006.152 006.907 007.830 008.798 009.855
T20 013.250 015.129 013.595 015.339 017.084 018.828 020.573
T25 024.952 035.427 023.190 025.371 027.552 029.732 031.913
T30 032.744 037.751 049.281 035.402 038.019 040.636 043.253

c1355 T10 000.000 000.139 000.893 001.647 002.401 003.155 003.909
T15 007.900 009.566 009.189 010.320 011.451 012.582 013.714
T20 022.983 026.000 029.016 018.993 020.501 022.009 023.518
T25 038.066 041.837 045.608 027.666 029.551 031.436 033.322
T30 053.150 057.675 062.200 036.338 039.330 040.863 043.126

c1908 T10 003.140 003.732 004.324 004.915 005.507 006.099 006.690
T15 008.066 009.944 010.832 011.719 012.607 013.495 014.382
T20 015.359 016.111 018.340 018.524 019.707 020.890 022.074
T25 024.749 025.100 027.090 028.884 026.938 028.286 029.765
T30 035.196 035.855 035.942 037.866 040.209 044.067 037.457

c2670 T10 023.403 025.084 026.806 028.584 030.362 32.140 033.982
T15 041.617 044.526 047.441 050.387 053.334 56.280 059.227
T20 060.493 064.606 069.049 072.991 076.950 80.936 084.922
T25 081.137 088.340 092.171 095.884 100.867 105.849 110.832
T30 100.542 117.577 113.181 132.332 131.624 138.105 136.851

c3540 T10 000.624 000.696 000.768 000.840 000.937 001.038 001.139
T15 001.982 002.810 002.708 003.085 003.474 003.883 004.293
T20 005.350 005.159 007.636 006.366 006.969 007.573 008.177
T25 007.657 017.588 009.916 013.920 015.115 011.390 012.181
T30 010.828 015.571 019.480 013.445 045.045 021.419 027.415

c5315 T10 007.858 011.719 012.840 013.972 015.136 016.306 017.477
T15 024.559 025.690 025.784 027.600 029.417 031.233 033.049
T20 039.732 042.558 041.610 041.613 044.074 046.536 048.997
T25 063.509 066.116 058.342 056.139 058.843 061.920 064.996
T30 074.338 102.908 085.120 107.317 095.169 077.304 080.996

c7552 T10 005.393 05.500 005.871 006.265 006.663 007.068 007.505
T15 009.431 010.237 011.069 011.919 012.795 013.698 014.611
T20 015.342 016.454 017.846 018.954 020.243 021.532 022.822
T25 022.605 025.980 026.880 026.368 029.263 029.592 031.204
T30 040.318 039.191 043.577 041.745 035.718 037.652 039.586

Table 4.4 Area increase in terms of buffer delay (ps)
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previous level output. We noticed several places where area would decrease with L (shaded

blue in Table 4.4). As illustrated, there is at least one place where this occurs in each circuit,

with the exception of c499 and 2670. In the case of T , we see that there are only a couple of

configurations where this occurs, namely in c3540 (underlined in Table 4.4). This explains how

target threshold for short paths affect increase in area. In most cases we noticed around 2%

increase in area for every 5% in L. In majority of the cases, we noted only moderate increase

in area (< 50%). We observed 12 cases where the area increase was more than 100%, in which

10 of them are from the same circuit, c2670. This is a 12-bit ALU with controller (c2670) that

has a lot of parallel paths with few common edges. Similar but less intense effect is seen in

the case of the 9-bit ALU (c5315). The configurations where the area increase exceeds 100%

is highlighted orange in the table.

4.7 Summary

Contamination delay is one of the major bottlenecks for achieving higher performance

in timing speculation architectures. In this paper, we investigated the theoretical margins

for improving performance for the dual latch framework. We brought forward the limits to

performance enhancements in timing speculation. Using our analysis, we demonstrated how

much performance improvement is achievable by increasing the contamination delay of the

circuit without affecting the critical path delays. Performance gains were attained even for the

cases affecting propagation delay by up to 10%. We studied further how these gains vary with

target timing error rate.

The main goal of this paper is to increase the short path delays to a specified threshold,

without (or minimally) affecting the critical path delays. We proposed the Min-Arc algorithm

to achieve this goal. We presented the results for ISCAS-85 circuits, where we have shown that

the Min-Arc is able to increase the contamination delay of all the circuits without affecting

propagation delay. We analyzed further as to how much these short paths increase while

allowing a small leeway to critical path delay. We observed moderate area increase in the

circuits implementing the Min-arc algorithm. Finally, we discuss how the algorithm preserves
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the path delay distributions of the circuits and therefore, closely maintaining the rate of timing

error occurrences from the original circuit.

To conclude, Min-arc algorithm successfully increases the contamination delay of logic

circuits with moderate area penalty. The results we have obtained are very promising, opening

up different directions for the near future. Managing short paths leads to different error

rates and power dissipation. Studying the interdependencies between different parameters

certainly helps us understand timing speculation architectures better. Comparative study of

synthesized circuits with and without Min-arc algorithm, and realizing it in hardware, like

FPGAs or ASICs, will make the case stronger for timing speculation in commercial circuits.
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CHAPTER 5. POWER BUDGETING USING DYNAMIC V-F PAIRING

Power management techniques have been well studied in the recent few years. Existing

methods choose one among the different available power states and can precisely control the

dynamic power of the system, to achieve the desired power/energy set point. The aim of an

efficient power management scheme is not only be to reduce power as much as possible, but

also to allow the processor to dissipate only as much as the budget allows. More importantly,

the challenge is to curtail the loss incurred due to power level transitions and circuit slow down

to minimal. As it was illustrated in Chapter 3, the predetermined power states in traditional

DVFS are set at the worst-case level, which leads to significant performance loss. It was also

shown how effectively DVARFS controls on-chip temperature, and minimizes power dissipation,

while enhancing performance. Although by intuition it is apparent that DVARFS is apt for

energy-efficient power management, it is necessary for us to do a comparative evaluation against

the existing schemes.

In this chapter, we implement a power management strategy similar to Intel SpeedStep.

Our goal is to show the effectiveness of adaptive frequency tuning beyond worst-case boundaries

in dynamic power management within a power budget as opposed to dynamic power level

shifting. We improvise the control mechanism proposed in the earlier chapter, thus making

the system more adaptable, while meeting the power constraints within safe thermal limits.

5.1 Power Dissipation in Aggressively Clocked Systems

In Section 3.1.2, we re-framed the basic performance equations making them suitable for

aggressively clocked processors. In this section we delve further into some of the important

metrics learn more about these systems. From our analysis, we devise an energy-efficient,
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power management scheme. By this we mean that our intention here is to sustain a power

constrained system, while keeping up to the performance as much as one can.

5.1.1 Computation Bounded Workloads

The speed-up expression presented in Equation 3.2 includes three parts. The first part

corresponds to the compute cycles in pipeline without IO/memory access. The final part

corresponds to the timing error recovery associated with overclocking. The remaining part of

the equation represents the fraction of time spent in IO/memory. In DVARFS, the amount of

time spent for recovery is typically one cycle, that is k = 1.

From Figure 5.1(a) it is evident that during traditional DVFS, when frequency is brought

down (q < 1), the total execution cycles reduce. This is because of the relatively fewer cycles

spent for memory. The figure shows the effect of frequency scale down on performance for

various memory access factors. For instance, a memory bound workload (say α = 25%) offers

close to 1.5 times more voltage scale down compared to a CPU bound workload (say α = 5%),

for the same performance loss of 15%.

On the other hand, the benefits of reliable overclocking surpass the memory penalties under

controlled error rate. This is clearly understood from the series of charts (b), (c) and (d) of

Figure 5.1. Here, we depict the speed-up for a spectrum of memory access factors relative to

target error rate, Se, for different values of q.

For performance enhancement, the system must tolerate 20%, 50%, 70% and 100% of timing

exceptions at the overclocking rates q = 1.2, 1.5, 1.7 and 2.0, respectively. In the forthcoming

sections, we show that for practical workloads the number of timing errors produced is quite

low for smaller values of q, but quickly reaches 100% for higher values.

Without loss of generality, we assume core activity to be directly proportional to IPC of

the processor core. In order to analyze the effect of frequency scaling on CPU threads, we

ran all the SPEC workloads in two different configurations in simple mode. In our study,

we implemented two different frequency settings, 2.5GHz and 3.4GHz. The core activity for

12 SPEC benchmarks for the two settings are illustrated in Figures 5.2 and 5.3. Each time
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Figure 5.1 Performance analysis of workloads with varied computation

boundedness

SPEC INT bzip2 crafty gap gzip mgrid vpr

%Load/Store 35.24% 32.94% 32.25% 22.21% 36.66% 40.78%

SPEC FP apsi equake galgel lucas mcf mesa

%Load/Store 35.83% 42.53% 43.34% 21.76% 34.30% 35.79%

Table 5.1 Percentage of load-store instructions in SPEC 2000 INT and FP

workloads

stamp depicts 10, 000 cycles. We noticed that the workloads have a slow start for the initial

few time stamps in spite of fast forwarding. From the two traces, we observed that increasing

frequency for certain workloads results in increased activity. In other words, frequency scaling

has positive impact on IPC of the system running computation bound threads. As a result,

these threads while running on a 3.4GHz processor complete execution several time stamps

ahead of those running at 2.5GHz.

Table 5.1 enlists the percentage of load-store instructions in SPEC 2000 benchmark suite.

The data is obtained from [90]. After careful observation, we inferred that all the threads with

the smaller percentage of load-store instructions tend to finish faster than those with higher

fraction of load-store. For instance, bzip2 and lucas are cases in point, where clock frequency

increases core activity resulting in faster execution.
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Figure 5.2 Thread activity trace for SPEC 2000 workloads running at

2.5GHz

5.1.2 Dynamic Power Dissipation

As mentioned earlier, overclocking increases the switching activity of the circuits causing

more dynamic power dissipation. Our intention here is to seek an upper bound on voltage to

save power in the overclocked processor. Eqns (5.1) and (5.2) illustrate the dynamic power

consumed by a non-overclocked system (Pno), operating at voltage Vno and that of an over-

clocked one (Pov) operating at voltage Vov. Here, α and C are switching activity factor and

circuit capacitance respectively.

Pno = α.C.V 2
no/tno (5.1)

Pov = α.C.V 2
ov/tov = α.C.V 2

ov.q/tno (5.2)

The above model is quite simplistic and does not account for the memory and timing error

tradeoffs. Moreover, power is a naive metric for analysis when it comes to handheld devices.

Rather, what is important is the impact of power. Power has two major impacts viz., on-chip

temperature and battery lifetime. Considering this we choose (1) power-delay-product or the
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Figure 5.3 Thread activity trace for SPEC 2000 workloads running at

3.4GHz

energy and (2) maximum and average temperatures for our study.

5.1.3 Energy Dissipation

The energy for the overclocked system is given by Eov, as shown in Eqn 5.3. Again, by

proper substitution we find Eno, the energy for a non-overclocked system.

Eov = Pov.n.(1 + α.q.Cm + Se.k).tov (5.3)

Upon simplification, we get the following upper bound for energy savings.

Pov < (
q × (1 + α.Cm)

1 + α.q.Cm + Se.k
).Pno (5.4)

5.2 History Based Profile Prediction

The feedback loop in DVARFS is a simple cycle that regulates voltage up or down by a

step for every sampling interval. One of the drawbacks in such a scheme is that the system
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takes time to converge on a power budgets. This results in loss of efficiency. The second

limitation is that the processor tends to get stuck at the lowest voltage level, and continue to

work at a higher clock rate (with highest allowed error occurrences). This may not turn out

to be the optimal selection of a V − f pair. Choosing an optimal energy-aware power level is a

hard problem. A reasonable objective is to adjust the V − f pairs according to the workloads.

In other words, it is wasteful to run the processor at higher frequency levels while executing

memory bound workloads.

We implement a simple prediction scheme for estimating the workload activity during the

next sampling interval. We adopt a technique similar to those in the literature. The basic idea

is to track the processor pipeline activity during the sampling interval. The window size, to

select the number of sampling intervals to be tracked down is decided depending upon which

one helps to predict the activity accurately.

5.3 Evaluation

Table 5.2 shows comparative study results of power budgeting between DVFS (dvfs) and

DVARFS (dvarfs). We used a random mix of SPEC integer and floating point benchmarks

to create different number workloads for each run. Specifically, we tried three set of workload

numbers, 32, 64 and 128. As mentioned earlier we used history based profiling for different

window sizes (1,2,5 and 8). The window sizes refer to the number of sampling intervals used

to predict activity during the next interval. Although we tried the experiment for different

window sizes, we did not find a specific trend in any of the metric.

We set the power budget at 25 Watts. It is clearly observed that DVARFS provides a finer

grained power supply compared to DVFS. This is due to the fact that DVARFS allows dynamic

pairing of voltage and frequency levels. In spite of keeping up with the power constraints,

DVARFS is able to run the processor at a higher frequency than DVFS due to reliable and

aggressive frequency scaling. In general DVARFS runs at 2.71 GHz compared to DVFS running

at 2.5 GHz. Energy and ED2 trends are similar to the one observed in Chapter 3. DVARFS

generally outperforms DVFS in both these metrics as well. This is obvious after looking at
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the lower power dissipation and higher operating frequency from DVARFS. A very important

thing to be noted here is that the number of timing errors is controlled within a predefined

budget. In this case we assume the timing error set point to be 5%.

Table 5.2 Comparative study results of power budgeting between DVFS

and DVARFS

WORKLOADS=32 WORKLOADS=64 WORKLOADS=128

WINDOW=1 dvfs dvarfs dvfs dvarfs dvfs dvarfs

Avg Freq (GHz) 2.52 2.71 2.50 2.71 2.51 2.72

Power (W) 22.73 20.20 21.74 19.93 22.21 20.27

Avg Activity 0.63 0.50 0.54 0.50 0.55 0.51

Energy (J)(×10−3) 0.54 0.52 1.12 0.98 2.38 2.02

ED2 (Js2) 1.03e-10 0.003e-10 1.07e-10 0.02e-10 1.34e-10 0.23e-10

WORKLOADS=32 WORKLOADS=64 WORKLOADS=128

WINDOW=2 dvfs dvarfs dvfs dvarfs dvfs dvarfs

Avg Freq (GHz) 2.51 2.70 2.50 2.71 2.50 2.72

Power (W) 22.21 20.04 21.66 20.14 21.81 20.26

Avg Activity 0.34 0.59 0.44 0.50 0.43 0.79

Energy (J)(×10−3) 0.62 0.57 1.23 1.14 2.47 2.097

ED2 (Js2) 1.35e-10 0.23e-10 1.39e-10 0.27e-10 1.71e-10 0.49e-10

WORKLOADS=32 WORKLOADS=64 WORKLOADS=128

WINDOW=5 dvfs dvarfs dvfs dvarfs dvfs dvarfs

Avg Freq (GHz) 2.51 2.74 2.50 2.73 2.50 2.73

Power (W) 22.14 20.80 21.91 20.37 21.86 20.48

Avg Activity 0.24 0.44 0.23 0.46 0.24 0.30

Energy (J)(×10−3) 0.54 0.52 1.17 1.02 2.44 2.12

ED2 (Js2) 1.71e-10 0.50e-10 1.74e-10 0.52e-10 2.05e-10 0.75e-10

WORKLOADS=32 WORKLOADS=64 WORKLOADS=128

WINDOW=8 dvfs dvarfs dvfs dvarfs dvfs dvarfs

Avg Freq (GHz) 2.50 2.74 2.50 2.69 2.51 2.73

Power (W) 21.91 20.69 22.06 19.74 22.20 20.43

Avg Activity 0.15 0.47 0.18 0.17 0.15 0.24

Energy (J)(×10−3) 0.63 0.48 1.27 1.09 2.50 2.15

ED2 (Js2) 2.05e-10 0.75e-10 2.10e-10 0.79e-10 2.42e-10 1.03e-10

5.4 Summary

In this chapter, we tried to bring out the importance of computation bounded threads on

processor performance. In the Chapter 3, we showcased temperature constrained aggressive
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microprocessor systems. Power, as a metric has earned its name to be a first class constraint in

today’s microprocessors. In this chapter, we focused on microprocessors running on constrained

power budget. The goal of our investigation is to ensure if DVARFS can work under power

constrained environment. We recognized that for the same power budget, there are more than

one voltage-frequency pairs. It is up to the power management algorithm to choose the best

one with power and performance in mind. In our next chapter, we address this issue from a

wider perspective, in chip multiprocessors.
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CHAPTER 6. UTILIZATION BASED TASK SCHEDULING IN CHIP

MULTIPROCESSORS

As a result of remarkable evolution of process technology, the idea of placing more than

one processing core on a chip is not farfetched anymore. With Chip Multiprocessors (CMPs)

already available in market, the road maps predict hundreds of cores in the next decade [91, 55],

essentially shrinking today’s data centers to a single chip. This implies that the power and

thermal management will be of the utmost importance in such systems [92]. Current power

management techniques use DVFS for on-line power and thermal management. It has been

shown that independent per-core DVFS combined with thread migration improves performance

up to 2.6X over a per-core gating [47]. Several variants of DVFS extension to CMPs have been

developed [93, 94, 95, 96, 52]. Nevertheless, as Chapter 3 emphasizes, the effectiveness of

DVFS is hampered by slow voltage transitions. Products from the leading microprocessor

vendors, such as Intel and AMD, have monitoring techniques that take necessary corrective

actions to maintain power budget and on-chip temperature. Industry standards support a set

of predefined power levels, and allow software applications to choose an appropriate level based

on environmental conditions and workload. The software can precisely control the dynamic

power of the system to achieve the desired power/energy set point. In spite of all these

advancements, power management techniques based on DVFS suffers from circuit slow down

and voltage transitions.

In this chapter, our main aim is to showcase the following:

1. Utilization as a metric for Energy Efficiency : Not all the power supplied is transformed

into useful work! We present an analysis on inefficient power management using current

workloads due to excess power supply. We bring out utilization as a factor for choosing
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a power level, from a different perspective, rather than ad hoc division of total power

budget based on core utilization.

2. Utilization-aware Task Scheduling (UTS) : We develop an energy-efficient power man-

agement solution for CMPs. In addition to the existing power constraints, we bring in

the utilization metric constraint to map the set of threads to the cores and manage the

excess power supplied. This model, along with aggressive, reliable framework will per-

form very differently than any of the existing power management techniques in improving

the overall system efficiency provided timing errors are harnessed.

Although it may seem straightforward at first sight to extend DVARFS to a CMP, it is

more involved. In CMP, the temperature not only depends on the current core’s state, but also

on neighborhood temperature. Thus, it requires a careful task scheduling aware of the core

states. Moreover, the workloads that run on these cores are diverse. Each workload has dif-

ferent effect in raising the core temperature. Several works have been proposed characterizing

tasks according to their workload intensity. However, very few works have been investigated,

combining better than worst case approaches with task scheduling, to squeeze out extract

maximum performance beyond conservative limits. We also take a step further to bring in

dynamic lifetime reliability management by controlling voltage and frequency of the individual

cores during run time.

6.1 Task Characteristics and Energy Efficiency

In order to develop an energy-efficient power management technique, it is important to

understand the behavior of standard workloads. Different workloads have different patterns of

computation, memory and input/output (IO). For illustration, consider Figure 6.1(a) and (b)

that shows the application throughput for SPEC benchmark suite [97]. Each pair of points

on a vertical level corresponds to one benchmark. The wide variability is shown in the figure

across benchmarks and base versus peak. We observe from the figure that the benchmarks

have variegated throughput. The throughput is expected to vary if the supply voltage is

altered, depending upon the computational density (Recall Figure 5.1). Thus in addition to
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the processor power requirements, we also need to consider thread power requirements, which

cannot be ignored for energy-efficient processing.

(a) (b) (c)

Figure 6.1 Throughput of SPEC benchmark suite on Intel Xeon processor

(a) SPECINT (b) SPECFP (c) Throughput of different threads

(with different α) and the dynamic power supplied at different

power levels

It is a common scenario in the case of CMPs, where each core competes with the other to

keep itself at the highest power level. If a core is set to operate at the maximum allowed power

level based on meeting the target power budget, then it is likely that a core may be supplied

more power than that is required to achieve the needed level of throughput. For instance, a

highly memory (or IO) bound thread is not going to perform any better no matter how high

the power level is. As current processors had already hit the power wall, it is outrageous to

disuse energy that cannot be utilized. Therefore, it is necessary to consider the utilization

factor awareness in addition to the existing power constraints when mapping threads to cores

and deciding power levels for the cores.

6.1.1 Utilization Aware Power Management

Let us look back at Equation 3.3 to calculate the speed-up at different power levels. To

understand the efficiency better, we plotted the throughput of threads with different values

of µ and the dynamic power at different power levels. The results (lines) in Figure 6.1 (c)

show the throughput values for various classes of workloads (Specifically, for µ = 5, 10, 15 and

20%). For illustration purpose we chose Cm = 10 cycles. The vertical bars correspond to

normalized power supplied at different power levels. The vertical axes are scaled accordingly



www.manaraa.com

102

to match the throughput obtained and power supplied. The bars rising beyond the throughput

curves illustrate the excess power supplied to the threads beyond the requirement. Although,

the system meets the power budget and there is no loss in performance, keeping the cores at

higher power set point leads to loss of efficiency. In other words, to increase the overall system

efficiency without loss of performance, it is required that each core gets supplied the exact

power it will use. In the forthcoming sections we propose our solution to achieve this goal.

6.2 Power Budgeting for Chip Multiprocessors

The power management techniques currently use DVFS for on-line power and thermal

management. Traditionally, all the DVFS associated techniques focus on retaining the system

at the maximum power level that meets the required power budget. As discussed above, this

does not always guarantee higher CPU efficiency. Moreover, these predetermined power states

are set at the worst-case level that leads to significant performance loss. To understand the

issue of achieving the optimal performance, we briefly present how the state-of-the-art power

management problem is formulated [98].

Suppose N threads are to be assigned to a N core system. The goal is to maximize the

throughput (Tp) under the given power budget without breaching the voltage constraints. This

is modeled as a linear optimization problem, as given below:

Maximize Tp = 1
N

∑N−1
i=0 tpi.

Subjected to:

1. Vlow ≤ vi ≤ Vhigh, ∀i ∈ 0 . . . N − 1,

2. bivi + ci ≤ Pcoremax ∀i ∈ 0 . . . N − 1, and

3.
∑N−1
i=0 (bivi + ci) ≤ Ptarget

Here, tpi is the individual core throughput, which is modeled as being proportional to the core

power level. That is, tpi = aivi ∀i ∈ 0 . . . N − 1, where ai is a workload dependent constant.

Notice that ai can be computed only after a task to core assignment has been completed. The

existing approach is to use the predicted values based on iterative approach. Vhigh and Vlow

are the upper and lower bounds for individual core voltage levels, Ptarget is the total power
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budget, Pcoremax is the maximum power that an individual core could handle, and bi and ci

are core dependent parameters.

A multitude of research works similar to the above scheme have been proposed and success-

fully implemented [93, 94, 95, 96, 52]. Near future technology allows placing most of present

day’s off-chip components on core, enabling per-core power level adjustments [48]. With such

flexibility, the future many-core systems enable ultra-fine grained power management using

DVFS at nanosecond scale in contrast to the existing order of tens of microseconds. The exist-

ing power management algorithms do not fully make use of this potential. Current techniques

simply try to split the total power budget (now, more accurately) across all the cores. They

overlook the fact that the total power supplied is not always usefully expended. From the

energy efficiency point of view this becomes a bottleneck.

In order to improve the overall system efficiency, it is necessary to redefine the objective of

the power management scheme to accurately assign the required power to all the cores, subject

to the power budget constraint. The required power by a core depends on various factors, such

as workload, core locality and parameter variations.

6.3 Utilization-aware Task Scheduling for the Many-Core Systems

In this section, we propose Utilization-aware Task Scheduling (UTS), an energy-efficient

power management solution for the CMPs. We will bring in the efficiency constraint to map

the set of threads to the cores in addition to the existing set of power constraints. This model

will perform very differently than any of the existing power management techniques. We will

also consider the power needs of the thread based on the expected throughput. Our goal is

to develop a thread power assignment algorithm, at every sampling interval, under the stated

constraints such that the overall system efficiency is improved without bringing out additional

overhead. In a many-core system, the temperature not only depends on the current core’s

state, but also on neighborhood temperature. Thus, it requires a careful task scheduling aware

of the core states. Moreover, as the workloads are diverse, each thread has different effect in

raising the core temperature. As we had shown earlier, DVARFS control loop is an effective
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way to handle thermal emergencies.

We formulate UTS as a linear optimization maximizing problem akin to one explained in

Section 6.2. We replace constraint 2 by bivi + ci ≤ Pcoremax.a
′
i . Where, a′i is the predicted

workload dependent constant associated with throughput of core i. We use history based

profiling techniques to predict the thread activity in the next execution window, similar to

ones existing works implement. That is, for every core i, we obtain ai during each interval.

Based on all the ais obtained over several intervals, a′i is predicted for the next interval.

Depending on the computation, memory and IO densities of the profiles, the power level

is assigned accordingly. While assigning the power level, we use the (V,f) pair assignment,

discussed in Chapter 3.

6.4 Simulation Framework

As a part of evaluating our earlier works presented in [56] and [73], we developed a single

core simulation framework using sim-outorder - a software functional simulator in SimpleScalar[59],

for 64-bit Alpha EV6 processor. We extend this framework to build our CMP environment.

The entire framework consists of four major modules, (a),(b),(c) and (d), as illustrated in

Figure 6.3. Our experiment involves a combination of both online and offline simulations. A

brief description of each of these modules is presented here.

6.4.1 Single Core Simulation

As stated above, we extend our single core evaluation framework to multiple cores. We

use the software functional simulator, sim-outorder in SimpleScalar[59]. Table 4.1 provides the

baseline configuration for the simulator. Our approach is based on exhaustive profiling of each

of the workloads for all possible combinations of voltage-frequency (VF) pairs. This forms

the first part of the offline simulations, illustrated by module (c) in Figure 6.3. In addition

to the power profile dumped, we also collect relevant performance related profiles from the

cycle accurate simulator, to facilitate the task scheduler. To incorporate the effect of voltage

transition, we include a penalty as obtained from [99]. The penalty is included at the beginning
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of execution during every voltage transition. We also include the leakage power dissipated by

the pipeline during the transition period.

For modeling power, we use Wattch[61]. Wattch is an accurate, architecture level power

tool that is embedded within sim-outorder of the SimpleScalar simulator. Wattch calculates

the energy accumulated over the cycles. We modified the tool to track the instantaneous

power for each functional block. As leakage power is becoming a dominant contributor to

total power in the nanometer scale designs, we modified Wattch to include this. We establish

our experiments with current state of the art by designing our simulations for the 45nm and

sub-45nm technologies.

6.4.2 Multiple Core Extension

330 K

370 K

Figure 6.2 Steady state temperature profile for an oct-core processor. The

floorplan is Generated by Mirroring and Replicating the Single

Core floorplan

6.4.3 Incorporating Timing Errors

In order to bring in the aspects of timing speculation, we model a reliably overclocked

processor using timing simulations. We obtain error profiles by running application binary on

a hardware model. We record the number of timing errors that occur at a given clock frequency
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in the hardware model of a superscalar processor. In that process, we analyze the error rate

for the different pipeline stages of a superscalar, dynamically scheduled integer pipeline similar

in complexity to the Alpha 21264 [100] that executes a subset of the Alpha instruction set.

We use the Illinois Verilog Model (IVM) [101] - a Verilog RTL implementation of the Alpha

microprocessor and synthesized individual pipeline stages using the 45nm OSU standard cell

library [102]. This becomes the second part of the offline simulations (Figure 6.3 (c)). The

errors corresponding to each circuit slowdown is used as the timing error profile for each VF

pair.

6.4.4 Power and Timing Error Profile

The power and timing error profiles generated during the offline simulations are stored in

a global directory, as key-value pairs, for individual workloads. Part (b) of the figure depicts

this. For any given workload, each key-value entry reflects the corresponding processor state

during that instant of execution. Thus the entire execution of the workload is preserved in

the form of directory listing. These profiles are used by the different instances of cores during

actual run.

6.4.5 Incorporating Thermal Model

We use HotSpot (part (d) of the figure), an efficient architecture level thermal modeling

tool to calculate temperature[60]. HotSpot requires the CMP floorplan as one of the inputs.

It also needs the instantaneous power dissipated for every cycle. Depending on the current

core’s VF pair assignment, this is provided from the directory corresponding to the executing

workload. The total power accumulated during the previous sampling time and the maximum

temperature reached by each of the cores is reported to the power monitor, part (a).

6.4.6 Task Scheduler and Power/Thermal Management

Part (a) of the simulation framework illustrates this module. Basically, this is the wrapper

module for the remaining part of the framework. The task scheduler includes the task queue,
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where each task is assigned individually to the respective cores. Power monitor assigns per

core (V, f) levels according to the power/temperature reported during the previous cycle by

HotSpot. An added advantage of using task scheduler as a wrapper module is that, we can

dynamically issue, preempt or migrates tasks on the fly more conveniently in the former case.

Further, the advantage of the profile based simulation compared to explicit multiple instances

of single core simulation is several folds. Apart from the better wall-clock time for simulation,

the former allows better scalability for multiple cores. The main reason for speed is because

of the simpler synchronization procedure across cores. In the case of multiple execution copies

(parallel simulations), the cores must be synchronized every cycle to match the corresponding

temperature entries with HotSpot. During typical execution, this takes much longer time

compared to synchronizing file reads.
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Figure 6.3 Simulation environment for managing power and temperature

in aggressive and reliable chip multiprocessor
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6.5 Evaluating UTS

We use the simulation framework mentioned above to evaluate UTS. We perform a com-

parative study against traditional linear optimization scheme. We use Intel Speedstep voltage-

frequency pair settings for this mode (trad). The linear optimization for power budgeting in

trad is similar to any of the existing schemes. For this study, we use the method described in

[98]. In our next mode, we go a step further by incorporating dynamic (V,f) pairing as in the

case of DVARFS (dvarfs). Intuitively, we expect a finer grained power management as there

are multiple options of choosing a (V,f) level for the same power budget. We compare these

two modes against UTS (uts). In uts, we use multiple frequency levels for any given voltage

level similar to dvarfs. For our experiment, we use four voltage levels similar to single core

scheme, and eight frequency levels per voltage level. In both these cases the system is prone

to timing errors due to aggressive frequency scaling beyond worst case limits. We account for

the penalties due to these errors as we did in the case of single core evaluation. In this case

however, we limit the timing errors under 10% per core.

For our evaluation, we did a number of simulation runs for different settings. We perform

our simulations for a number of core settings, viz., 8, 12, 16 and 20 cores. For each of these

settings we chose three task queue sizes, viz., 32, 64 and 128. Each simulation setting is

represented by (xC:yQ), where x and y are the number of cores and queue length, respectively.

All the results presented are normalized relative to trad mode.

6.5.1 Activity and Power Dissipation

Figure 6.5 shows a window of activity trace for trad and uts during the run of 8 core

CMP. The x-axis units represent the sampling intervals. As it is clearly seen, the execution

window comprises of diverse workload executions in either cases. This is quite evident from

the frequent fluctuations of the activity factor from one level to another, typically from 40%

to 90%. Lower activity implies higher percentage of memory/IO instructions in the workload

(or a memory/IO bound workload), while higher activity implies higher computational density

in the workload. From this graph we understand that there is a good mix of workloads from
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each type. The second reason to study this graph is to verify that the workload selection has

created a level playing field for the different modes. As illustrated in the figure, this seems

evident.

The chart illustrated in Figure 6.6 reports the total power supplied to the 8 core CMP

at every sampling interval during the execution window corresponding to the activity trace

chart. We chose 150W power budget for the CMP and 25W for individual cores. We also

provided a 10% tolerance to the supplied power to make sure the linear optimization always

converges, and also to allow a margin for possible error during activity prediction for next

interval. We start the simulation runs assuming 100% activity for the first prediction interval.

This is the reason why both trad and uts start at the highest power levels. The working of

uts is clearly reflected from this figure, where we see a lot of fluctuations in the total power

supplied. Looking deeper into it, we understand that these fluctuations directly correspond to

the activity of the current workload. As mentioned earlier, we use a simple prediction algorithm

for estimating the activity of the next interval for each mode. Whenever, the predicted activity

is low, the power supplied is reduced correspondingly in uts. This is the reason why the total

power supply never increases above the budget. In fact, uts tends to keep the power budget

within the lower end of the 10% margin. However, this is not the case for trad, where not only

there are very few options of choosing power levels, but also the fact that it tries to divide the

maximum power supplied among the cores keeps the overall power constant.

Figure 6.7 shows the average power dissipation across all 8 cores for the three modes,

trad, dvarfs and uts. For the reasons explained above, CMP implementing trad tend to

dissipate more power. The main point to be noted here is that, even though trad seem to

consume more power, in reality it is still under the power budget (including tolerance). The

significance of aggressive frequency scaling (multiple frequency levels at each voltage level) is

evident from the power consumption of dvarfs. It should be noted that there is no change

in the optimization algorithm or formulation from trad to dvarfs. The only difference is in

the number of available frequency levels per voltage. As it can be observed, dvarfs consumes

15-25% lesser power compared to trad.
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In uts, the power supply to each core is adapted depending on the workload’s computational

density. It is observed that for some cores, over 45% of power saving is possible using uts.

It is worthwhile to stress the point that this 45% power goes unused (excess power supplied),

which is typically loss of efficiency in the case of trad.

6.5.2 Average Power, Performance and ED2

Figures 6.8, 6.9 and 6.10 illustrates power, performance and ED2 for different simulation

configurations, respectively. The results shown are the average values across all cores. Power

dissipation for uts in all the cases are better than the other two modes. uts saves from 25 to

45% of power relative to traditional power assignment scheme. Maximum power is saved for

the 8 core CMP with queue size 32.

In most cases dvarfs saves power, while in few cases trad consumes less power. Maximum

power is consumed for the 16 core configuration with queue length 32. A general observation

is that dvarfs performs better for larger queue lengths. A reasonable explanation for this is

that more than half of the selected workloads (6 integer and 7 floating point) are computation

bounded. Hence, a larger queue provides much more opportunity for saving power while

improving performance through overclocking than a smaller queue. However, this trend is no

longer seen in the case of uts because, in this scheme aggressive overclocking is limited by the

core activity.

Comparing the performance of trad with dvarfs and uts, we see that there is a significant

performance improvement (10%) of the latter modes relative to trad. However, there is not

much difference in performance between the latter two modes. Maximum performance of

around 12% is achieved for 16 core CMP with queue length 64.

ED2 measures the useful work done in a power constrained high performance system. It is

clearly illustrated how dvarfs and uts use minimal ED2 compared to existing methods. Over

50% savings in ED2 is achieved for the 12 core configuration. In single core simulations we

showcased how effective DVARFS scheme works in terms of ED2. However, the utilization-

aware task scheduling has gone a step further by outperforming DVARFS based scheme in
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every configuration.

6.6 Summary

Power budgeting is one of the critical activities for efficient functioning of present day’s chip

multiprocessors. Traditional way of power allocation among cores leads to loss of efficiency

due to excess power supplied for non-compute bound workloads. In this chapter, we brought

forward the significance of efficiency in terms of core utilization and power supply. We pro-

posed UTS, bringing the additional utilization constraint to the existing power management

technique. From our evaluation we inferred that UTS improves performance by up to 12%

due to aggressive power level switching. We also inferred that UTS saves over 50% in ED2

compared to traditional power management techniques.

Based on our research we recommend that future multi-core systems should deploy

1. local fault detection and recovery circuitry to support aggressive, but reliable timing

speculation for efficient, on-line power & thermal control, and performance enhancement.

2. a power management scheme that not only assigns power to individual cores based on

its utilization, but also curtails the excess power that will be supplied to the cores.

3. utilization aware task scheduling along with aggressive timing speculation in order to

squeeze out maximum performance from the system without loss of efficiency and breach-

ing power & thermal constraints.

Results from our evaluation look promising for possible realization of the architecture in hard-

ware prototype. We strongly believe that such a circuit will provide a unified solution for both

fault-tolerant and power-aware systems.
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CHAPTER 7. CONCLUSION AND FUTURE WORKS

Microprocessors are designed to function reliably for the worst-case settings, allowing pos-

sible performance improvement by making common cases faster, and creating opportunity to

improve processor performance to a greater extent through overclocking. When the system

is forced to operate beyond this conservative limit, they also adversely impact on-chip tem-

peratures, leading to hot spots. Overclocking enthusiasts invest heavily in expensive cooling

solutions to protect the chip from overheating, and such overclocked systems typically have sig-

nificantly lower lifetime. Additionally, reliable overclocking techniques necessitate additional

circuitry, leading to an increase in power consumption. Higher clock speeds and power den-

sities invariably lead to accretion of on-chip temperature over a period of time. As systems

operate faster, on-chip temperatures quickly reach and exceed the safe limits. This poses a

serious threat to the lifetime reliability of the systems in the present and near future. The very

intention of this dissertation is to overcome the challenges brought forth by recent technologi-

cal advancements in the field of computer architecture. In particular, to develop software and

hardware solutions to overcome the conservative design approaches due to process, voltage,

and temperature variations in digital circuits.

In this thesis, we presented an overview of specific limits suffered by reliably overclocked

systems. We showcased impact of power on chip temperatures and analyzed its effect on

lifetime reliability. By adopting to a typical reliable overclocking framework, we studied the

thermal behavior of Alpha processor. We made the case for the need of a powerful thermal

management scheme in reliably overclocked circuits. We proposed an efficient technique for

performance enhancement and thermal management called the DVARFS scheme, exploring a

new direction to manage on-chip thermal conditions to achieve maximal performance benefits.
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The DVARFS mechanism facilitates to reliably overclock the processor under thermal bounds

at target lifetime with a programmable error rate. We established an extensive simulation

framework environment, integrating various tools to perform our simulation studies. Using

this framework we have shown that the DVARFS scheme performance in par with existing

DVFS scheme despite exceeding the worst-case operating frequency. We achieved vast im-

provements in performance compared to traditional designs assuming target system lifetime.

Our simulation results reveal that controlled reliable overclocking is indeed a beneficial way to

enhance performance taking thermal constraints into consideration.

We have shown how short path delay in digital circuits is a major bottleneck for achieving

higher performance in timing speculation architectures. After theoretical analysis, we demon-

strated how much performance improvement is achievable by increasing the contamination

delay of the circuit without affecting the critical path delays. We proposed a solution to in-

crease the short path delays so that they are no longer a constriction for timing speculation.

We introduced the Min-Arc algorithm that efficiently places buffers in along the edges of the

short-paths. We have shown that the Min-Arc is able to increase the contamination delay of

all the circuits without affecting propagation delay. Our algorithm is designed in such a way

that even in the case where increasing short path delay is not possible without affecting critical

paths, with a slight margin on propagation delay it achieves the intended goal. We observed

moderate area increase in the circuits implementing the Min-arc algorithm. In short, it is not

an overstatement to say that Min-arc algorithm successfully increases the contamination delay

of logic circuits with moderate area penalty.

It has become common for the present day systems to have multicore processors. Allocation

of power to each core is a tricky problem. With the way existing power schedulers work, there is

still a wide margin for improving system efficiency. In this thesis, we showcased how prioritizing

utilization in power management algorithm improves energy efficiency significantly. From our

evaluation we inferred that UTS improves performance significantly due to aggressive power

level switching. We also inferred that UTS cuts down ED2 consumption by over half compared

to traditional power management techniques. Results from our evaluation look promising for
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possible realization of the architecture in hardware prototype. We strongly believe that such

a circuit will provide a unified solution for both fault-tolerant and power-aware systems.

As a part of our evaluation process, we built an extensive simulation environment by

integrating SimpleScalar - a C based simulator for Alpha EV6 processor, with Wattch power

model and integrated thermal model, HotSpot. Timing details are brought from the hardware

experiments that are run on a 45nm gate level implementation of the superscalar processor.

To summarize, the goal of this thesis is to develop a system having the potential to provide

dynamic knobs to adjust power consumption, performance, energy and temperature. We

believe this is a very significant paradigm that will revolutionize the design of multi-core

architectures and peta-scale computing system design. This research experience has given

many valuable insights into the functionalities of micro-architectures and chip multiprocessors.

This dissertation is an exploration to dynamically managing voltage and frequency beyond

the worst-case design specifications. The results we have obtained are very promising, opening

up different directions for the near future.

We are continuing this work by implementing our scheme on a hardware platform such as

FPGA and tracking temperature on-line through thermal sensors. We are approaching industry

to plan a test of our model with an ASIC model. The results we obtained at this juncture are

very promising, setting up many different directions for the near future. Hardware realization,

like FPGAs or ASICs, will make the case stronger for timing speculation architectures in

commercial circuits.
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A. EXECUTION TRACES

This appendix illustrates the execution traces of the SPEC INT and FP workloads that

we simulated for the comparative study of DVARFS with other modes discussed in Chapter 3.

We executed six integer and seven floating point workloads for the analysis. Figures A.1 and

A.2 show the voltage trace, Figures A.3 and A.4 show the frequency trace and A.5 and A.6

show the error traces. Temperature and MTTF are illustrated in Figures A.7, A.8 and A.9,

A.10, respectively.

Following this, we present the power and energy related metrics from Figures A.11 through

A.18. A detailed, zoomed in illustration for each of these parameters and metrics during an

execution window is presented in Figures A.19, A.20 and A.21. With all the traces, we were

able to understand the working of different techniques for each of the executing threads. We

were also able to assert the simulation functionality.
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Figure A.1 Voltage trace for SPEC INT workloads
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Figure A.2 Voltage trace for SPEC FP workloads
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Figure A.3 Frequency trace for SPEC INT workloads
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Figure A.4 Frequency trace for SPEC FP workloads
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Figure A.5 Error trace for SPEC INT workloads
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Figure A.6 Error trace for SPEC FP workloads
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Figure A.7 Temperature trace for SPEC INT workloads
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Figure A.8 Temperature trace for SPEC FP workloads
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Figure A.9 MTTF trace for SPEC INT workloads
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Figure A.10 MTTF trace for SPEC FP workloads
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Figure A.11 Power trace for SPEC INT workloads
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Figure A.12 Power trace for SPEC FP workloads
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Figure A.13 PDP trace for SPEC INT workloads
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Figure A.14 PDP trace for SPEC FP workloads
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Figure A.15 EDP trace for SPEC INT workloads
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Figure A.16 EDP trace for SPEC FP workloads
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Figure A.17 ED2 trace for SPEC INT workloads
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Figure A.18 ED2 trace for SPEC FP workloads
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Figure A.19 Zoomed window of voltage, frequency and error traces
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Figure A.20 Zoomed window of temperature, MTTF and power traces
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Figure A.21 Zoomed window of PDP, EDP and ED2 traces
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