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ABSTRACT

As more and more transistors fit in a single chip, consumers of the electronics industry con-
tinue to expect decline in cost-per-function. Advancements in process technology offer steady
improvements in system performance. The improvements manifest themselves as shrinking
area, faster circuits and improved battery life. However, this migration toward sub-micro/nano-
meter technologies present a new set of challenges as the system becomes extremely sensitive
to any voltage, temperature or process variations. One approach to immunize the system from
the adverse effects of these variations is to add sufficient safety margins to the operating clock
frequency of the system. Clearly, this approach is overly conservative because these worst case
scenarios rarely occur. But, process technology in nanoscale era has already hit the power
and frequency walls. Regardless of any of these challenges, the present processors not only
need to run faster, but also cooler and use lesser energy. At a juncture where there is no
further improvement in clock frequency is possible, data dependent latching through Timing
Speculation (TS) provides a silver lining. Timing speculation is a widely known method for
realizing better-than-worst-case systems.

TS is aggressive in nature, where the mechanism is to dynamically tune the system fre-
quency beyond the worst-case limits obtained from application characteristics to enhance the
performance of system-on-chips (SoCs). However, such aggressive tuning have adverse con-
sequences that need to be overcome. Power dissipation, on-chip temperature and reliability
are key issues that cannot be ignored. A carefully designed power management technique
combined with a reliable, controlled, aggressive clocking not only attempts to constrain power
dissipation within a limit, but also improves performance whenever possible.

In this dissertation, we present a novel power level switching mechanism by redefining the
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XV

existing voltage-frequency pairs. We introduce an aggressive yet reliable framework for energy
efficient thermal control. We were able to achieve up to 40% speed-up compared to a base
scheme without overclocking. We compare our method against different schemes. We observe
that up to 75% Energy-Delay squared product (ED?) savings relative to base architecture is
possible. We showcase the loss of efficiency in present chip multiprocessor systems due to excess
power supplied, and propose Utilization-aware Task Scheduling (UTS) - a power management
scheme that increases energy efficiency of chip multiprocessors. Our experiments demonstrate
that UTS along with aggressive timing speculation squeezes out maximum performance from
the system without loss of efficiency, and breaching power & thermal constraints. From our
evaluation we infer that UTS improves performance by up to 12% due to aggressive power level
switching and over 50% in ED? savings compared to traditional power management techniques.

Aggressive clocking systems having TS as their central theme operate at a clock frequency
range beyond specified safe limits, exploiting the data dependence on circuit critical paths.
However, the margin for performance enhancement is restricted due to extreme difference
between short paths and critical paths. In this thesis, we show that increasing the lengths of
short paths of the circuit increases the margin of TS, leading to performance improvement in
aggressively designed systems. We develop Min-arc algorithm to efficiently add delay buffers
to selected short paths while keeping down the area penalty. We show that by using our
algorithm, it is possible to increase the circuit contamination delay by up to 30% without
affecting the propagation delay, with moderate area overhead. We also explore the possibility
of increasing short path delays further by relaxing the constraint on propagation delay, and
achieve even higher performance.

Overall, we bring out the inter-relationship between power, temperature and reliability of
aggressively clocked systems. Our main objective is to achieve maximal performance benefits
and improved energy efficiency within thermal constraints by effectively combining dynamic
frequency scaling, dynamic voltage scaling and reliable overclocking. We provide solutions
to improve the existing power management in chip multiprocessors to dynamically maximize

system utilization and satisfy the power constraints within safe thermal limits.

www.manaraa.com



CHAPTER 1. INTRODUCTION

Rapid advancements in process technology have revolutionized the way in which computing
systems are built over the past several years. Conventionally, operating frequency has been
the measure of choice to evaluate the performance of processors and system-on-chips (SoC).
Power continues to be a first-class design constraint and the major limiter to the growth of
system performance in the nanoscale era. Manufacturers are required to add guard-bands to
the system clock frequency to guarantee reliable execution of digital systems.

In a pipelined processor, the clock frequency is determined based on the circuit critical
path across all stages, under adverse operating conditions. However, the circuit propagation
delay may change, as process, voltage and temperature variations are introduced during cir-
cuit fabrication. Traditional design methodologies for the worst-case operating conditions are
too conservative as the critical timing delays rarely occur in tandem, during typical circuit
operation. Moreover, circuit delay has a strong association with the data being processed and
hence, not all instructions in a program under execution induce the worst-case delay. For
instance, in a carry-propagate adder, the worst-case delay occurs only when the carry is to be
propagated through each bit-slice, which occurs only for a specific input data set [1]. Such
infrequent occurrence of critical timing delays has opened a new domain of study that allows
improvement of processor performance to a greater extent through overclocking. Impressive
results can be achieved using this technique. For example, a 2.8GHz 45nm AMD Phenom
IT processor running at speeds of up to 4GHz on air cooling alone have been reported [2].
Such is the interest with overclocking enthusiasts that chipset manufacturers are introduc-
ing technologies that support overclocking. AMD’s Overdrive and Advance Clock Calibration

technologies are cases in point. However, overclocking leads to system instability (i.e. system
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crashes) and overheating which ultimately lead to unreliable systems. Reliable overclocking
mechanisms strive to guarantee functional correctness by employing mechanisms to detect and
recover from timing errors. A host of recent works explore the viability of reliable overclocking
schemes to improve system performance beyond worst-case limits [3, 4, 5].

Although reliable overclocking mechanisms facilitate in improving performance, a major
hurdle in realizing them is their impact on on-chip temperature. These techniques necessitate
additional circuitry and also consume more power. Higher clock speeds and power densities
invariably escalate on-chip temperature over a period of time. The problem becomes much
more intensified due to the high performance requirements placed on the chip by the running
applications. Moreover, higher power dissipation curtails the battery life in portable systems.
In the case of high-end servers and high performance clusters, the effect is reflected in the cost
of providing the cooling solutions. As systems operate faster, on-chip temperatures quickly
reach and exceed the safe limits, causing localized hot spots in the chip that lead to system
crashes and possibly causing device failures. This poses a serious threat to the reliability of
these systems over the long run.

Dynamic Voltage and Frequency Scaling (DVFS) is a well studied system level on-line power
and thermal management technique. Current products from both the leading microprocessor
vendors, Intel and AMD, have dynamic thermal monitoring techniques that take necessary cor-
rective actions to maintain on-chip temperature. Industry standards such as Intel SpeedStep,
AMD PowerNow, and Transmeta Longrun technologies alternate between a set of predefined
voltage and frequency pairs, and choose the best pair based on environmental conditions and
processor workload. However, the reduction of frequency and the time taken for transition from
one operating voltage-frequency set to another to maintain system temperature causes signifi-
cant performance loss when executing applications that demand high performance. Techniques
such as Razor [6] provides a design based on aggressive design methodologies that impose Dy-
namic Voltage Scaling (DVS) without altering frequency. It is imperative to mention here
that such schemes still suffer moderate to significant performance degradation during voltage

transition. Moreover, these techniques do not fully exploit the data dependence while adopting
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timing speculation.

In this dissertation, we present a review of the current technology, what it offers to solve
the above mentioned problems and discuss the various challenges it faces. The goal of this
proposal is to render new ideas that overcome these challenges. Power and temperature play
an important role on the lifetime of a reliably overclocked system. This proposal investigates
the intricate inter-relationship between these parameters to guarantee the failure-free operation
of the system.

The failure of a system can be classified as transient and permanent. Transient failures
are temporary (e.g. glitches), however, permanent failures occur when the devices actually
fail. Increase in temperature is an undesirable but unavoidable side-effect that results from
manipulating frequency to enhance performance. This increase in temperature is one of the
main contributors of system failures. Achieving maximal performance benefits within the
thermal constraints by effectively combining DFS, DVS and reliable overclocking is one of the
goals of this thesis. Our solution embraces aggressive design methodologies allowing errors to
occur for performance benefits, while maintaining temperature within acceptable limits.

Driven by unending need for high performance and remarkable evolution in process tech-
nology, more than one processing core per chip has now become viable, thus paving the way
for chip multiprocessors (CMP). It is clear that power management (and hence temperature
regulation) is of utmost importance in CMP. DVARFS can easily be extended to cover CMPs
as well. Can DVARFS do anything at all to assist existing power management to improve
system efficiency further?. This research work answers this very question by developing an

efficient task scheduler for maximal utilization within critical thermal limits.

1.1 Thesis Organization

The report opens with a brief introduction to all the research issues addressed in the
dissertation; mainly it covers the need for temperature regulation and importance of energy
efficiency in aggressively overclocked systems. Chapter 2 presents an overview of recent related

researches published in literature. A brief treatment of the necessary background and detailed

www.manaraa.com



technical reviews of some related works are subsequently provided. In Chapter 3, we introduce
DVARFS and explain in detail about its functionality. We evaluate DVARFS with a variety
of metrics and show how the technique is suitable for a spectrum of systems, from handheld
devices to high performance processor systems. Following this is Chapter 4, where we explore
theoretical limits and possibility of increasing the short-path delays for possible increase in
performance enhancement through aggressive overclocking. In this chapter, we propose an
algorithm that efficiently and controllably increases the contamination delay of the circuit.
We also show our evaluation for benchmark circuits. Chapter 5 stresses the importance of
efficiency of processor systems and introduces utilization as a metric for power constrained,
high performance systems. In Chapter 6 we introduce our utilization-aware task scheduling in
chip multiprocessors and explain in detail its working and evaluation. In this chapter, we also
show how we built our chip multiprocessor simulator from a single core environment. Finally,
in Chapter 7, the report closes with concluding remarks and presents brief ideas to possible

further extensions and future works.

1.2 Thesis Contributions

The main goal of this dissertation is to investigate different system level techniques for
thermal control, energy efficiency, and performance augmentation. Our motive is to provide
viable techniques applicable to mainstream processors. In this work, we explore the potential
solutions to overcome key challenges faced by the nanoscale technology era.

The seminal contributions of this thesis are as follows:

e Existing techniques to speed up the circuit operation rely on faster clock rates. Reli-
able overclocking is the concept of aggressively clocking the processor, allowing timing
errors to occur, and recovering all those errors through timing speculation. Although
aggressive clocking methodologies achieve the speed-up, they neglect the issue of over-
heating the chips. These techniques invariably rely on powerful cooling solutions that are
quite expensive. This creates the need for an efficient thermal management scheme at

the micro-architecture level to scrutinize on-chip temperature yet achieve as much high
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performance. In this thesis, we study the impact of on-chip temperature on processor
lifetime and we explore the possibility of achieving a desired lifetime by controlling the

operating temperature.

Traditional power management schemes work based on switching back and forth between
different power levels that are determined offline. As we point out in our study, this poses
as a huge overhead to achieve high performance. Hence, the power management schemes
have to be re-defined to overcome this overhead. Contrast to traditional DVFS, where
operating frequency is tuned to match circuit delay, we propose multiple predefined
frequency levels, beyond conservative limits at any voltage level. We adopt a reliable
and aggressive framework for our study. The system power level is now selected from a
spectrum of frequencies (instead of one) for every voltage level. However, this incurs a
cost due to timing error recovery. We develop Dynamic Voltage, Aggressive and Reliable
Frequency Scaling (DVARFS) - an energy efficient thermal control mechanism using the

redefined power level switching.

Aggressive clocking systems have timing speculation as their central theme and operate
at a clock frequency range beyond specified safe limits, exploiting the data dependence on
circuit critical paths. One of the major factors limiting the degree of timing speculation
is the contamination delay of the circuit. The margin for performance enhancement is
restricted due to extreme difference between short paths and critical paths. This has
been one of the major factors that restrict realizing timing speculation architectures in
practical circuits. This requires a fast and efficient method during the synthesis process to
manage the short paths by increasing their delay up to a threshold. In this thesis, we show
that increasing the lengths of short paths of the circuit increases the margin of timing
speculation, leading to performance improvement in aggressively designed systems. We
develop Min-arc algorithm to efficiently add delay buffers to selected short paths while
keeping down the area penalty. We explore the possibility of increasing short path
delays further by relaxing the constraint on propagation delay, and achieve even higher

performance.

www.manaraa.com



e Multiprocessors in a chip have become a common commercial commodity in the last few
years. Proficient power assignment across different cores is intriguing. Understanding
thread power requirements and assigning power to the cores running these threads ac-
cordingly is the problem of our interest. We perform a study on limitations of existing
power management solutions due to excess power supply. We bring out utilization as a
factor for choosing a power level. We develop Utilization-aware Task Scheduling (UTS)
an energy-efficient power management solution for CMPs. We add utilization metric
constraint to the existing power constraints to schedule threads to the cores. We show
that this model, along with aggressive, reliable framework will perform very differently
than any of the existing power management techniques in improving the overall system

efficiency provided timing errors are harnessed.
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CHAPTER 2. BACKGROUND

The persistent CMOS scaling conforming to the ‘Moore’s law’ has provided a steady im-
provement in cost-per-function. This has led to significant advancements in industrial and
consumer electronics, and economic productivity. For instance, the current 45nm Intel i-7
quad core processor supports up to 3.3GHz clock frequency and is available in PC market [7].
Nevertheless, the process technology, beyond 45 and 32nm, is facing new challenges under the

conventional path of technology scaling [8]. The present processors not only need to run faster,

but also cooler and use less energy.

2.1 Clock Frequency in Nanoscale Technology
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(a) Typical pipeline stage (b) Circuit delay with process, voltage
and temperature variations (c) Clock period with guard bands

Figure 2.1

In a pipelined processor, the datapath consists of several stages, comprising dependent and

independent blocks of combinational logic interleaved by set of register elements, as illustrated

the clock frequency is determined by the circuit critical path across all

www.manharaa.com



the stages. However, as device size shrinks further in the nanoscale era, it becomes increasingly
complex to control the manufacturing process. This eventually leads to non-uniform circuit
delay distribution across the chip.

The deviations are mainly reflected in three forms, namely, process, voltage and tempera-
ture variations. Figure 2.1(b) shows a general trend how the increase in variation of each of
the category affects delay. From this, we observe that the best case design occurs with the
least variations in the device dimensions, maximum voltage and lowest temperature. And, the
worst case design is the one with maximum dimensional variation, lowest voltage and maxi-
mum temperature. During manufacturing, in order to guarantee correctness even at the worst
scenario guard bands are added to the clock period, as shown in Figure 2.1(c).

The vendor-specified frequency includes a safety margin to provide tolerance for process
variations, voltage fluctuations, extreme temperatures and power densities. However, such
worst-case operating conditions and timing delays rarely occur in tandem during typical circuit
operation. This had shifted the paradigm from worst case design methodology to design for
common case. Thus, breaching the worst case design limits while guaranteeing correctness
became the problem of interest in order to extract maximum performance out of the processor.
Reliable overclocking allows embedded systems and processors to run at higher frequencies than
the manufacturer specified worst-case frequency. For systems operating in typical operating
environments, significant benefits can be achieved through overclocking, if reliable execution

can be guaranteed.

2.2 Better-than-worst-case Designs

One of the earliest works on aggressive clocking, TEATIME [5] scales the frequency of a
pipeline using dynamic timing error avoidance. This technique attempts to achieve better-than-
worst-case performance by realizing typical delay operation rather than assuming worst-case
delays and operating conditions. TEATIME achieves this by modeling a one-bit wide delay
chain that reflects the worst-case critical path of the system, plus a safety margin. A prior work

to this called TIMERTOL [9] exists in which, timing error tolerance is achieved by multiple
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special copies of the pipeline logic. Similar architectures include CTV [10] and X-Pipe [11]
that propose timing speculation at pipeline stage level.

The most significant aspect that can be exploited by reliable overclocking is the input data
dependency of the worst-case delays. The worst-case delay paths are sensitized only for specific
input combinations and data sequences [12]. Typically, the propagation delay of the digital
system is much less than the worst-case delay and this can be exploited by overclocking. The
benefits of overclocking can be furthered by allowing a tolerable number of errors to occur,
and have an efficient mechanism to detect and recover from those errors. In addition to this,
systems have different design restrictions, such as power, energy or area constraints. Based on
all this, there are numerous architectures that have been proposed over the years.

Architectures without logic replication have been proposed at stage level. The basic idea
is to duplicate latching; using shadow latches that always guarantees correctness. When a
timing error is detected, it is recovered the following cycle. This technique along with dynamic
voltage scaling has been used to improve energy efficiency [6]. Along with adaptive clocking
mechanisms, reliable overclocking improves performance drastically [3]. In [13], the trade-
off between reliability and performance is studied, and overclocking is used to improve the
performance of register files.

Timing speculation has been well studied in the chip multiprocessors as well. Generally,
these techniques couple two cores such that one of them is sped-up with the help of the other.
The acceleration may be due to the execution hints provided by the advanced stream as in
Slipstream [14], or in addition the advanced stream may be overclocked as in Paceline [15].
Here, the checker compares the results at checkpoints regularly. If there is a mismatch, the
checker copies its current state to the leader.

Other works in the domain seek to improve common case performance through functionally
incorrect design [16, 17]. The Selective Series Duplex architecture [18] consists of an integrity
checking architecture for superscalar processors that can achieve fault tolerance capability
of a duplex system at much less cost than the traditional duplication approach. DIVA [17]

uses spatial redundancy by providing a separate, slower pipeline processor alongside the fast
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processor. The desire for better than worst case designs is much more serious in nanoscale
technology. PVT variations within and across the die are causing the bottleneck while selecting
the worst-case frequency. ReCycle [19] uses additional registers and clock buffers to apply cycle
time stealing in the pipeline, from faster stages to the slower ones. Another technique, EVAL
[20] has been proposed to maximize performance with low power overhead in the presence of
timing induced errors.

Apart from these run-rime schemes, there are static methods that are specifically developed
for better than worst case architectures. The effect of parameter variations and its impact on
timing errors has been studied in [21]. BlueShift [22] proposes a design methodology from
ground up. The main idea is to identify and optimize the frequently used critical paths, called

the ‘overshooters’ at the expense of the lesser frequent ones.

2.3 Impact of Scaling

Reliable overclocking methodologies address the timing error problem albeit other crucial

factors exist that confine overclocking such as power and on-chip temperature.

2.3.1 Power Dissipation

The power consumed by a VLSI chip consists of two parts: dynamic and static. Dynamic
power is consumed due to the clock switching activity. Dynamic power is dependent on
capacitance (C), voltage (V'), and frequency (f), and is given by Equation (2.1). The node
transition activity factor, « is the effective power consuming transitions per clock cycle (e = 0.5
for 50% duty cycle). Since power is directly proportional to frequency at which the circuit

operates, overclocked systems consume more power than non-overclocked systems.

Pyyn = aCV?F (2.1)

Static power or leakage power is the inherent power consumed by the circuit even when the

clock is stopped. The leakage increases proportionally with temperature, as given by Equation

www.manaraa.com



11

(2.2) [23]. Here, g is a technology dependent constant (/5 is 0.036 and 0.017 for 180nm and
70nm respectively), Ty is the temperature of a reference point and 7; is the temperature

at it

" instant with respect to the reference point. Note that Equation (2.2) has a positive
feedback: increase in temperature leads to higher leakage and total power, which in turn
increases temperature.

]Dleak X eﬁ(TiiTD) (22)

Earlier, technologists considered dynamic power to be the major component of the total
power consumed and ignored the static component, as static power dissipated had been far less
significant. But now, it has been realized that, in deep sub-micron technology, this assumption
is no longer valid, as leakage power has become a substantial constituent of total power dissi-
pated. As power dissipation is proportional to quadratic of the operating voltage, scaling down
voltage is an effective way of cutting down total power. However, scaling voltage slows down
the circuit demanding increased clock period. This Dynamic Voltage and Frequency Scaling
(DVFS) technique is a widely accepted method for power management, however, inevitably
accompanied by significant performance overhead.

As mentioned above, increased power dissipation leads to escalated on-chip temperatures.
Since cooling mechanisms are not cost effective, the necessity for a control mechanism built
within the processor chips emerged as an economically viable approach. Designs began to
include thermal sensors in various locations on a processor chip [24]. DVFS mechanisms
were employed to manage temperature. As dynamic energy scales in quadratics with supply
voltage, significant energy reduction is possible by lowering the supply voltage [25]. However,
the resulting slow processor narrows the gap between high performance and low power [26].
Follow on research started to focus on design of thermally aware high performance processors
aiming for minimal performance impact for specific applications [27, 28, 29]. Clock gating and
voltage gating were developed to lower power dissipation during processor idle times and does
not affect the performance.

Offline methods have the capability to deliver almost the same effect as dynamic schemes in

thermal management. HotFloorplan involves thermal aware floor-planning, based on simulated
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annealing [30]. Profile based static approach reduce peak processor temperature with relatively
lower performance overhead. Another static approach proposes temperature aware design for
low-power systems-on chip [31]. The design divides multiprocessor system on-chip into blocks
using 3-D finite element analysis.

The need for low power architectures that deliver high performance while consuming as
less power as possible is increasingly being felt by embedded system designers as they try to
pack more and more power intensive computational tasks while curtailing their power budgets.
Dynamic Voltage Scaling (DVS) is an approach that aims to bring down power without altering
clock frequency. Razor architecture [6, 32| proposes such a design methodology. Here, the
timing errors due to DVS are detected and corrected by additional checking circuitry. The
voltage is dynamically scaled from the worst case settings, keeping track of the timing errors,
until the number of timing errors exceeds a target error set point. Razor suffers a moderate
performance cost because of reduction in voltage.

Industry standards such as Intel SpeedStep, AMD PowerNow, Transmeta Longrun tech-
nologies alternate between a set of predefined voltage and frequency pairs and choose the best
pair based on worst-case voltage, temperature and process conditions. Correlating voltage
controlled oscillator approaches have been proposed wherein the oscillator speed automatically
adapts based on the supply voltage and generates the fastest safe clock speed [33, 34]. More
aggressive power reduction can be achieved by tuning the supply voltage of individual processor

chip using embedded inverter delay chains [35].

2.3.2 Thermal Impact on Lifetime Reliability

Higher temperatures not only increase power budget, but also affect the lifetime reliability
of the devices. Several factors such as, rapid heating and cooling of processor chips create
thermal cycles and localized heating, leading to hot spots, ultimately wearing out the circuits.
To improve the overall reliability and lifetime of systems, the thermal performance of sys-
tem should be monitored and the average degradation of the transistors should be managed

[36]. RAMP [37] provides an architectural solution to the lifetime reliability problem. The
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dynamic reliability management (DRM) presented in the paper ensures that target lifetime
reliability is achieved. RAMP relates mean time to failure due to various wear out factors and
brings the importance of on-chip thermal balance. Table 2.1 summarizes five critical failure
mechanisms, namely, electromigration, stress migration, time dependent dielectric breakdown,
thermal cycling and negative bias temperature instability as specified in RAMP, with their re-
spective mean time to failure (MTTF). Here, k is Boltzmann’s constant and 7' is temperature
in Kelvin. These wear out phenomena create impedance in the circuits gradually leading to
permanent device failures.

Electromigration occurs due to transport of material due to gradual movement of the ions
in a conductor caused by the momentum transfer between electrons and the diffusing metal.
Here, J is the interconnect current density. Activation energy, F,gar and n are constants that
depend on the interconnect metal used.

Stress Migration is a phenomenon that creates voids in the circuit, as a result of hydro-
static stress gradient. These voids may lead to high impedance or even break the circuit. This
occurs due to difference in thermal expansion rates of materials. Again, E,spr, m and the
metal deposition temperature, T},ctq; are metal dependent constants. T, generally assumes
a value far higher than circuit operating temperature. This means, |yt — 1| increases
with 7. This is the reason why improving lifetime reliability is not as obvious as bringing
temperature down.

Time dependent dielectric breakdown, also known as oxide breakdown occurs as a
result of destruction of the gate oxide layer, and gradually leads to permanent transistor failure.
Here, a,b, X, Y and Z are fitting parameters.

Sudden rise or fall in temperature causes thermal cycles which ultimately lead to device
failure. Thermal cycles are caused by differences in thermal expansion rates across metal
layers. Thermal cycling is proportional to the difference between current temperature and
the ambient temperature Ty,pient- Here, q refers to the Coffin-Mason exponent, which is
empirically determined material dependent constant. From this definition, one could observe

that sudden cooling of devices below Ty,pient Worsens the lifetime reliability.
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Table 2.1 MTTF for critical wearout models

Figure 2.2 shows how the increase in steady state temperature affects the processor lifetime.
The proportionality constants are chosen assuming the baseline MTTF at 337K to be 30 years

[37]. We use the reliability model to determine the critical temperature, for a target lifetime.
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Figure 2.2 MTTF for different steady state temperatures

2.4 Evolution of Chip Multiprocessors and their Current Problems

The quest for higher performance requirements had paved the way for the micro-architectural
innovations. Instruction Level Parallelism (ILP) is a key factor that decides the microprocessor

--------- idesissuessuperscalar processors extract the last ounce of performance from the
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single threaded applications. Increasing the issue width beyond certain limit diminishes yield
and also results in low power-performance efficiency. Several architectural innovations, such
as Very Long Instruction Word (VLIW), multi-cluster superscalar and Simultaneous Multi-
threaded (SMT) processors were proposed as an extension to the existing processor designs.
Deeper pipelines offer faster clock frequency by dividing complex stages into number of sub-
stages. For instance, Intel Pentium 4 processor has a twenty stage pipeline [41]. However,
studies show that increasing pipeline depths may no longer hold for improving clock frequency
[42].

Due to high power constraints, processor technology generations are unable to scale clock
frequency as desired. Evolution of Chip Multiprocessors (CMP) eased power problems com-
pared to other options. IBM introduced POWERA4 [43] and POWERS5 [44] architectures,
which were the initial industry attempts of CMPs. Recently, there are many designs that have
emerged in this direction, including Intel Montecito [45] and Sun Niagara [46], making CMPs

the natural choice for low power and performance scalable architectures.

2.4.1 Thermal Management in CMP

Although multicore processors were designed to ameliorate the power related problems,
due to technology’s strict adherence to Moore’s law, power density continues to increase. In
addition to this, the temperature is not uniformly spread across the chip due to unbalanced
workload across cores. This leads to localized hot spots at particular portions of the chip.

The single-core power management techniques, such as gating and DVF'S cannot be directly
applied to the multiple core scenarios due to the associated overhead. Also, a multicore scenario
offers additional options such as thread migration that may reduce performance loss to some
extent. It has been shown that independent per-core DVFS combined with thread migration
improves performance up to 2.6X over a per-core gating [47]. Nevertheless, the effectiveness of
DVFS is hampered by the slow voltage transitions. Incorporating on-chip regulators enables
nanosecond scale voltage switching and can lead to significant energy savings [48].

As the number of cores increase in the CMPs, thermal management becomes non-trivial.
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Workload characteristics, neighborhood temperature, and core locality play a vital role in de-
ciding the core temperature. Based on this, many thermal aware task schedulers for CMPs
have been proposed [49, 50, 51]. Recently, a thermally constrained power model has been
proposed that maximizes the DVFS state in any interval, within a given power/thermal bud-
get [52]. Although the resulting system outperforms reactive and ad-hoc voltage switching,
maintaining the system at the maximum power state may not result in maximum efficiency.
Industry standards such as Intel SpeedStep, AMD PowerNow, and Transmeta Longrun
technologies alternate between a set of predefined voltage and frequency pairs and choose the
best pair based on environmental conditions and processor workload. However, the present day
DVFS schemes involve a large overhead at the time of transition from one operating voltage-
frequency set to another. This creates the necessity for a low-overhead solution, maximizing

energy efficiency and working within the thermal constraints.

2.5 Timing Speculation Architectures

In this part of the chapter, we introduce some of the timing speculating architectures,
explain their working and point out their positive and negative impact. We start by introducing
briefly to an existing timing speculation framework for a pipelined processor. Processors that
use reliable overclocking have this in-built error detection and recovery mechanism to deal with
timing errors that may occur. We assume this error detection and recovery framework in the
context of our proposed work. We discuss the application of timing speculation to boost single
threaded performance. In the later sections of the chapter, we discuss how the most recent

works handle these challenges in CMPs. We also bring out the fallouts of these schemes.

2.6 Local Fault Detection and Recovery

Reliable overclocking enables processor to work at frequencies past the worst-case limit,
thereby causing timing errors to occur. Therefore, it is necessary to add built-in error detection
and recovery mechanism. Local fault detection and recovery (LFDR) circuit we describe here

is one such mechanism.
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In a pipelined architecture, timing errors occur during overclocking when data takes longer
time to propagate through the combinational logic stage, but the register at the end of the
stage has already been clocked to latch the data. For a given combinational circuit, time for
data to propagate through the stage depends on the data themselves and the supply voltage.
Timing error occurs due to the mismatch between the circuit delay and the provided clock
frequency. The LFDR circuit detects and corrects such errors with the help of an additional
backup register controlled by a phase shifted (PS) clock. Thus, the circuit uses two clocks

working at the same overclocked frequency.
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A brief description of how these circuits work is presented here. The MAIN register is
controlled by the Main Clock and the BACKUP register is clocked by the Phase Shifted PS
Clock. Both Main and PS Clocks have the same frequency at all times, but are phase shifted as
needed. The dense combinational logic has multiple inputs and outputs, and possibly with more
than one path from each input to output. The circuit operates without timing errors, unless

the time period of the tuned clock is insufficient for the active paths in the combinational logic
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to reach the MAIN register. In that case, the MAIN register would have latched an erroneous
value. However, the BACKUP register always latches the correct value, as long as the PS Clock
is provided with the necessary phase shift. This is indicated by the arrow going from the Main
Clock to the PS Clock in Figure 2.3(b). The amount of phase shift is such that, the time delay
from the first rising edge of Main Clock to the second rising edge of PS Clock is not less than
the propagation delay of the circuit. Also, it should be noted from Figure 2.3(b) Case (ii) that
the maximum phase shift, and hence overclocking is limited by the contamination delay, which
is the minimum amount of time beginning from when the input to a logic becomes stable and
valid to the time that the output of that logic begins to change, of the circuit. In case, if the
system is overclocked further, the BACKUP register is no longer guaranteed to latch the correct
value.

When data latched in the MAIN register and the BACKUP register do not match, a local
error signal is raised. In case of an error, a local recovery measure is taken by changing the
control of multiplexer to select data from BACKUP register during the next cycle. The stage
error signal is raised by performing logical OR of all local errors. All pipeline stages preceding
this stage are stalled for a cycle, which is achieved through a global recovery mechanism.
Moreover, all the stages following this stage process a bubble in a pipelined fashion. We

discuss two applications of the LFDR circuit in the following subsections.

2.6.1 SPRITSE

The Superscalar PeRformance Improvement Through Tolerating Timing Errors (SPRIT3E)
was designed to dynamically tune superscalar processors beyond the worst case limit for en-
hancing their performance [3]. The number of timing errors that occur is directly proportional
to the amount of frequency scaling. Therefore, by fixing the maximum number of errors in
a time window, SPRIT®E limits the timing errors under a budget. The framework is evalu-
ated for an 18 x 18 multiplier implemented in FPGA. Limiting the timing error budget to a
reasonable number, the LFDR implemented circuit can enhance the performance up to 44%.

Similar experiment is performed for DLX superscalar processor, which is also synthesized for
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the FPGA. By limiting the target error rate to 1%, SPRIT?E achieves on an average 43%, and

a maximum of 57% over the worst case settings.

2.6.2 Razor

Razor uses timing error tolerance in the context of Dynamic Voltage Scaling (DVS) [6, 32].
Razor explores the extent to which voltage can be scaled down at a given frequency. The
goal of this work is to achieve increased energy reduction by eliminating the voltage margins.
The proposed Razor technique was implemented in a 64-bit Alpha processor prototype at
0.18um technology, operating at 200M H z. The prototype was verified using simple programs.
Analysis show that for the critical stages (Decode and Execute), only 192 Razor flip-flops out
of a total of 2048 were used. Simulations were performed to analyze performance and power
characteristics. In a 64-bit Alpha processor only 192 flip-flops out of 2048 flip-flops required
Razor augmentation. Results show an average of 40% power reduction compared to traditional
design that includes 3.1% energy overhead due to additional circuitry. There is a moderate

performance overhead, around 3%, due to the voltage switching activity.

2.7 Thermal Consequences of Overclocking

Reliable dynamic clock frequency tuning for performance enhancement is incomplete with-
out considering the thermal effects. Processors cannot be overclocked indefinitely, as this in-
tensifies on-chip temperature. Thermal plots shown in Figure 2.4 compares a non-overclocked
Alpha EV6 processor, running at 1GHz and an overclocked one, running at 2GHz. We
observed that steady state for dynamic reliable overclocking reached 380K, while the non-
overclocked settles at around 330K . This necessitates an efficient scheme for thermal balance

in reliably overclocked processors, which is part of the proposal’s goal.

2.8 Facelift

Continuous workload activity causes wearing out of the devices in microprocessors. The

device aging gradually results in slower circuits. Facelift attempts to hide and slow down aging
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Figure 2.4 Steady state analysis (a) Non-overclocked (b) Reliably over-
clocked

in multicore processors through aging-driven application scheduling and appropriate voltage
changes during the service life [53].

Facelift mainly focuses on the impact of aging on circuit critical paths. It takes into
consideration two of the wear out phenomena, namely Negative Bias Temperature Instability
(NBTI) and Hot Carrier Injection (HCI) that primarily affects PMOS and NMOS transistors
respectively. The circuit slow down is directly proportional to the elevation of threshold voltage
(V) of the transistors. The paper uses the alpha power law to model this. This is incorporated
in the critical paths of the processor and the cache.

Facelift categorizes tasks into high-T and low-T jobs. Since cores do not age uniformly, the
effect of aging is hidden by assigning high-T jobs to the faster cores and low-T jobs to slower
ones. This aging-driven scheduling enables the chip to appear age less. Figure 2.5(A) shows
the trends comparing slowest and fastest cores with traditional and aging-driven scheduling.

The impact of aging is slowed down via chip-wide Adaptive Supply Voltage (ASV) and
Adaptive Body Bias (ABB). ABB is further classified into Forward Body Biasing (FBB) and
Reverse Body Biasing (RBB) based on the voltage polarity. Similarly, ASV is classified into
ASV+ and ASV- depending on Vy; value. Hence, combing RBB and ASV- results in slower
circuits and hence causes slower aging. This technique called SlowAge. The second option is

to combine FBB and ASV+ for faster circuits. Hence called HighSpeed. Figure 2.5(B) shows
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Figure 2.5 (A) Application scheduling effects (a) Traditional (b) Aging—
driven (B) Applying techniques that change the aging rate

application combination of these techniques and expected service life. From the empirical
model used, it is consequently observed that it is best to apply SlowAge at the beginning of
the service life and HighSpeed towards the end.

The evaluation architecture is modeled for a CMP at 32nm with 16 cores, running at
4G Hz. Each core models a 4-issue out-of-order Alpha 212624 processor. Simulation results
show that by hiding and slowing down aging, a 7 year service life processor can run 14-15%
higher frequency. Alternatively, Facelift also enables processors designed for 5-7 months service
life and still use it for 7 years. Implementation of Facelift is quite simple. It only involves re-
calculation guard bands for hiding aging. Current technology also supports the ABB and ASV
techniques that are used for the slowing down aging.

The basic idea behind aging-driven scheduling is to make slowest core age slowest and
faster core age fastest. This suggests scheduling hot tasks to fast cores and cold tasks to slow
cores. This approach may not be efficient from thermal point of view. In other words, this
static scheduling may lead to hot spots. Further, Facelift does not take into consideration the
neighborhood thermal impact on core aging. This cannot be done unless there is a dynamic

scheme that keeps track of temperature online. The technique can be further improved as
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a dynamic scheme to control aging, considering input dependence and making use of PVT

guards bands.

2.9 Thread Motion

Thread Motion (TM) is an alternative technique to DVFS for fine grained power manage-
ment in multi-core systems [54]. The aim is to increase system throughput by extracting the

maximum out of a given set of applications at a given power budget.
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- 2 -::::;ﬂ:::::::‘ P
B: A 5 1 1

(a) (c)
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Figure 2.6 (a) Thread motion in a multicore system. (b) Exploiting fine—
grained application variability in two running threads. (c¢) Duty
cycling between 2 VF levels to match IPC

Traditional DVFS are OS driven and are hence too slow to fine variations in the program
behavior. Thread Motion works under the basic premise that individual cores work at dif-
ferent voltage-frequency (VF) levels. Thread Motion allows threads to migrate between cores
according to the current state of threads and cores. Figure 2.6 illustrates the Thread Motion
phenomenon. It uses variability per instructions as a measure of application variability. It is
calculated from the difference in IPC between sampling intervals.

Thread Motion involves two approaches: time — driven and miss — driven. As their name
suggest, TM is invoked on a regular time (cycles) and number of cache misses respectively. TM

assumes a clustered multicore architecture, where inter-cluster TM is more expensive and less
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frequently used compared to intra-cluster TM. The TM manager runs in a separate embedded
microcontroller and runs the TM algorithm. The algorithm is a simple, cost-benefit analysis
performed in irregular intervals. Implementing TM involves additional cost for inter-cluster
cache penalty, prediction and register file latency. In spite of all these, TM with two VF
levels performs in par with traditional DVFS schemes. Further for a given power budget, TM
provides up to 20% better performance than coarse coarse-grained DVFS.

Although the potential performance benefits of TM are quite obvious, it suffers some lim-
itations. First, irregular VF domains cause unbalanced heat distribution across cores. This
difference in VF levels across cores may affect the life time of the cores in the long run. One
way to overcome this effect is to combine DVFS with TM instead of using it as an alterna-
tive. Secondly, implementing TM for non-shared caches and complex cores are quite complex.

It would involve an additional engine that might pose as an overhead from performance and

power point of view.
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CHAPTER 3. DYNAMIC VOLTAGE, AGGRESSIVE AND RELIABLE
FREQUENCY SCALING

Persistent CMOS scaling has led to significant progress in industrial and consumer electron-
ics, and economic productivity [7]. Nevertheless, the process technology, beyond 45 and 32nm,
is facing new challenges under the conventional path of technology scaling [55]. As IC chips
get denser, consumers of the electronics industry can expect continuous decline in cost-per-
function. Process technology in nanoscale era has already hit the power and frequency walls.
In spite of all these hurdles, the processor industries not only aim to build faster circuits, but
also cooler and energy efficient one. At a juncture where there is no further improvement
in clock frequency is possible, data dependent latching through timing speculation provides
a silver lining. A carefully designed power management technique combined with a reliable,
controlled, aggressive clocking not only attempts to constrain power dissipation within a limit,
but also improves performance whenever possible.

In this chapter, we present a novel power level switching mechanism by redefining the
existing voltage-frequency pairs. We introduce an aggressive yet reliable framework for energy
efficient thermal control. We were able to achieve vast improvements in performance compared
to a base scheme without overclocking. We compare our method against different schemes using
other metrics. We observe that our solution provides huge Energy-Delay squared product
(ED?) savings, with controlled on-chip temperature. In short, we develop and evaluate a

thermally constrained, reliable and energy efficient high performance system.
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3.1 Design and Implementation of DVARFS

In the previous chapter, we emphasized the consequences of overclocked circuits. It is nec-
essary to throttle overclocking based on the on-chip temperature. We developed a thermal
constrained reliable overclocking technique that ameliorates system power and lifetime relia-
bility [56]. This initial exploration has opened up a direction towards developing a powerful
thermal management scheme that enhances performance as much as possible while operating
well within the thermal limits, guaranteeing an extended system lifetime. We alter the existing
DVFS technique to support reliable overclocking, and unify them by a common framework.

We call scheme, DVARFS - Dynamic Voltage - Adaptive and Reliable Frequency Scaling.

3.1.1 Voltage-Frequency Feedback Control System

The control system encompasses two global feedback systems, one for controlling reliable
overclocking and the other to regulate voltage. The two feedback systems and their interplay is
illustrated in Figure 3.1. The major components of the control system are the voltage controller
(VC), voltage regulator (VR), clock controller (CC) and clock generator (CG). VC works based
on the readings from a thermal sensor. Voltage is lowered to bring down the temperature when
sensor temperature exceeds critical limits, and when the system is below critical temperature,
voltage is scaled up. VC assigns new voltage, V', to VR and corresponding base frequency, F
to the controller CC.

At every voltage level, CC dynamically tunes clock frequency based on the number of
timing errors reported by the error counter. CG provides the Main and PS clocks to the
enhanced pipeline for timing error recovery. CG receives two inputs from the clock controller,
namely, the new frequency (F' + AF), and the corresponding amount of phase shift (®). AF
can be positive or negative depending upon whether the base frequency needs to be increased
or decreased. The phase shift, ® is calculated based on F' and AF. Additional control is
necessary to freeze the pipeline stage during frequency scaling and flushing the pipeline during

voltage scaling (to save power during stall cycles).
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Figure 3.1 Temperature and timing error control loop

3.1.2 Analyzing Aggressive Clocking Systems
3.1.2.1 Error Rate

Aggressive clocking comes with the price of recovering timing errors during typical circuit
operation. For any practical benefits, it is necessary to fix a bound for overclocking, as every
error induced imparts overhead in terms of additional recovery cycles. Let t,, denote the
current time period and ., denote the time period after overclocking. Let ¢4 be the difference
in time between original and next time period. Then, to execute n clock cycles, the total
execution time is reduced by t4;r¢ X n, when there is no error. Let S, k and t,; denote the
fraction of clock cycles affected by errors, error recovery cycles and time for PLL to lock next

frequency respectively. Then, equation 3.1 gives the bound on the timing errors that can be
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tolerated without adding overhead.

tdiff tpil

Se <
C Tt Xk M Xty Xk

(3.1)

We dynamically switch between different discrete voltage settings and vary frequency in a
given range at the current voltage setting. The two independent feedbacks allow us to set
different sampling intervals based on their respective switching penalties. Current products,
such as IBM PowerPC 750GX processors use dual PLL scheme for clock generation to per-
form dynamic power-performance scaling [57]. This allows instant frequency switching, when

frequency sampling interval is greater than ;.

3.1.2.2 Speed-up

During overclocking, the clock frequency of the memory is not scaled, thereby increasing
the total number of execution cycles. Let each memory operation take C,, cycles at t,, and
q be the factor by which the frequency is scaled i.e., (¢ = %}f) Now, after overclocking each
memory operation takes q.C), cycles.

Let us assume that the system takes n clock cycles without considering memory cycles.
If « denotes the factor of memory accesses that happen when the system executes n cycles.

Then, the new execution time due to reliable overclocking is given by:
Exoy = nitoy + n..q.Crytoy + n.Se.k.toy (3.2)

To express original runtime (Ex,,) from Eqn 3.2, we replace ty, by t,, and substitute ¢ = 1

& S, = 0. The overall speed up is calculated as given by Eqn 3.3.

Exy, gx (1+a.l.Cy)
Speedup = = 3.3
P = By~ (1+ .q.Cm + Se k) (33)

From Eqn 3.3, it is clear that computational density of workloads has a direct impact

on speed up. Detailed analysis on how workload attributes affect performance enhancement
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margin is provided in Chapter 5.

3.1.2.3 Voltage-Frequency Pairs

The voltage controller supports a set of predefined discrete voltage levels. The supply
voltage has a strong association with circuit delay. For our understanding, let us consider the

empirical model for this as given by Eqn (3.4).

AL
20547CoxW(V — V)2

Delay = (3.4)

Here, vgar, Cox and W are technology dependent constants; C' specifies the load the circuit
drives; V and Vp are the system voltage and threshold voltage respectively (Vp = 0.2398V for
45nm technology) [58]. Eqn (3.4) suggests that the time period provided should match this
Delay.

In conventional DVFS, the frequency is reduced corresponding to the circuit delay at each
voltage level. The voltage-frequency (VF) pairs are determined off-line during design phase
for the worst-case settings. However, in our case it is necessary for us to determine the VF
pair dynamically. One way to do this is to relate the number of timing errors with the circuit
slow down, thereby relating to the capacitive load that can be driven for that time period.
Rearranging Eqn (3.4) for V,,, tne and V,,, t,, yield the following loads that can be driven

respectively.

Km:w,[( *M

ov —
no Vov

Thus, the percentage slow down for the new VF pair with respect to the current one is given
by Eqn 3.5.

Kno B Kov
%SlowDown = — e X 100 (3.5)

no
Let us assume that at a given voltage, the system had settled down on a frequency that
yields maximum performance under controlled error rate. During DVFS, the VF pair that has

thegsamen%SlowPowngwould bear the same error rate. As opposed to the traditional DVFS,
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where the frequency for the corresponding voltage is set a priori (and cannot be changed), here
the clock controller is still prone to alter the frequency subject to the occurrence of timing

errors.

3.1.3 Temperature Throttling

For thermal control, we define a predefined temperature set point based on which, the volt-
age feedback control functions. The power down temperature, 7}, is the maximum temperature
the circuits can withstand (typically, T, = 105°C). The critical temperature, T, is a preset
temperature below 7}, for reliable operation of the circuit. We desire the system to stay within

this limit, by switching back and forth the operating voltage.

3.2 Experimental Framework

To validate DVARFS technique, we use SimpleScalar simulator [59] for Alpha EV6 proces-
sor. Table 4.1 provides the baseline values for the simulator. Thermal sensor implementation
is done using HotSpot 4.0 [60]. The instantaneous power trace to calculate temperature, is
provided by Wattch power model [61] integrated within the SimpleScalar tool. The entire

framework is shown in Figure 3.2.

3.2.1 Wattch-HotSpot Integration

Wattch is an accurate, architecture level power tool that is embedded within sim-outorder of
the SimpleScalar simulator [61]. Wattch calculates the energy accumulated over the cycles. We
modified the tool to track the instantaneous power for each functional block. We use HotSpot
model to calculate temperature, an efficient, architecture level thermal modeling tool [60].
HotSpot requires the floorplan of the underlying processor, from which the temperature for each
functional block is calculated, based on the instantaneous power values of corresponding blocks.
We take the temperature output from HotSpot to calculate leakage power using Equation 2.2.
The additional power due to error recovery circuits are included appropriately as reported by

[6]. We sample instantaneous power from Wattch every cycle and track temperature variations
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Parameter

| Value

Fetch width

4 inst/cycle

Decode width

4 inst/cycle

Issue width

4 inst/cycle (000)

Commit width

4 inst/cycle

Functional units 4 INT ALUs
1 INT MUL/DIV
4 FP ALUs
1 FP MUL/DIV
L1 D-cache 128K
L1 I-cache 512K
L2 Unified 1024K
Technology node 45nm
Voltage 1.25,1.15,1.00,0.95V

Base frequencies w.r.t voltages

2536, 2475, 2402, 2316 M H 2

No. of freq levels per voltage

32

Critical Temperature T. = 363K
Initial Temperature 333K
Temperature sampling 1ms

Freq sampling 10us
Voltage penalty 100us

Freq penalty

Single PLL: 10us
Dual PLL: Ous

Table 3.1 Simulator parameters

in HotSpot. We make use of dynamic thermal variations for our feedback control. We use
transient analysis for our experiments rather than steady state analysis. We establish our
experiments with current state of the art by designing our simulations for the 45nm technology.
We adopted the scaling parameters from the parallel multicore version of the SimpleScalar

PowerPC simulator [62, 63].

3.2.2 Incorporating Timing Errors

We bring in the aspects of timing speculation in the SimpleScalar simulator from a hardware
model. We used the Illinois Verilog Model (IVM) - a Verilog RTL implementation of the Alpha
microprocessor. Since the IVM is not fully synthesizable, we had to synthesize and evaluate the

individual pipeline stages. We used the 45nm OSU standard cell library for timing estimation
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Figure 3.2 Simulation framework depicting feedback control of timing er-
rors and temperature for clock tuning

[64]. Figure 3.4 shows the cumulative error rate for SPECINT2000 suite. We noticed around
89.17% of the paths fail in the issue stage at 3.5ns, which causes a sudden rise in error rate.
As IVM does not support float, we instrumented SPECFP2000 instructions and performed
timing analysis for FP ALU obtained from opencores.org. We incorporate these reported error

rate values in our functional simulator.

3.2.3 Incorporating Feedback Control System

With this extensive simulation framework environment, we propose to experimentally val-
idate the claims of DVARFS scheme. Our goal here is to show that controlled reliable over-
clocking is indeed a beneficial way to enhance performance taking into consideration about

thermal constraints.

3.3 Evaluation and Results

In this section we present the results of our simulation studies. Our goals in this evaluation

are as follows:

len Topanalyzesthesperformance of the DVARFS with processor having no thermal control
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(Simple), traditional DVFS (DV F'S), Reliably Overclocked Processor (rop), and Ther-

mally throttled ROP (¢rop) schemes.

2. To examine the effectiveness of the thermal control in each of the above mentioned

schemes (henceforth called modes). And,

3. To perform a comparative study of the average power and energy dissipation for different
modes. In addition to this, we also measure energy delay product (EDP) and EDP delay

product (ED?).
For analyzing the thermal impact, we make a fair assumption that if the control scheme keeps
the peak temperature of the processor below critical limits, then it achieves the target lifetime
pertaining to it. We assume the critical temperature, T, = 363K corresponding to 10 year
lifetime. All the normalized measures are relative to Simple mode.
3.3.1 Algorithms for Various Feedback Control Mechanisms

3.3.1.1 Base Case: Simple

We evaluate all the feedback control mechanisms relative to the base case of no thermal

-outorder without any modifications and compare all the other
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Figure 3.4 Illustration of feedback control system flow diagram and the
main simulator loop in the framework. NOTE: The pipe stages

are illustrated in reverse order as it is modeled in sim-outorder

mode performances with respect to this run. This allows us to normalize the results with a
base system. We maintain the same processor configurations and technology parameters for all
the modes. During any thermal emergencies the system is allowed to work beyond the critical

limits. For the purposes of this study, we allow such scenarios to occur to get to know how

effective the other thermal control methods are.

3.3.1.2 Dynamic Voltage and Frequency Scaling: DV F'S

We implemented DVFS mechanism for thermal control in our simulation. The pseudocode
to implement this scheme is given in Algorithm 1. When executing in this mode, the temper-
ature is sampled once in several cycles, depending on the interval length. During temperature
sampling intervals, this module checks if the maximum processor temperature (maximum tem-

perature among all the functional blocks) exceeds the predefined critical temperature. If so,
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the voltage controller is called to reduce the operating voltage one level below the present
level. The voltage controller correspondingly re-assigns the clock frequency to the base level.
If the processor is already running at the lowest possible voltage level, a ‘Panic’ signal is raised.
During other times, when temperature is below the critical limits, the voltage level is increased

one level up. Again, the frequency is increased to the new base frequency.

Algorithm 1 Traditional DVFS; can be modified into Razor by changing
VF_PAIR]]

if ((sim_cycle — sim_cycle_oldv) > Vcycles) then
sim_cycle_oldv = sim_cycle;
if ((max_current_temperature > Tcritical)) then

if (vlevel > 0) then
vlevel — —;
new_voltage = VOLT AGEvlevel];
new_frequency = VF_PAIR[vlevell;
dv f s(new_voltage, new_frequency);
Vpenalty(new_frequency);
else
signal(PANIC); // Temperature exceeded at minimum voltage level; Nothing Can be
done!
end if
end if
else
if (vievel < (LEVELS — 1)) then
vlevel + +;
new_voltage = VOLT AGE|vlevel];
new_frequency = VF_PAIR[vlevel];
dv f s(new_voltage, new_frequency);
Vpenalty(new_frequency);
else
signal(PANIC); // Already at Max Voltage; Nothing Can be done!
end if
end if

3.3.1.3 Reliably Overclocked Processor: rop

In this mode we do not incorporate any thermal control mechanism. We replicate the same

functionalitiessas:SPRIT3E: through controlled overlocking. We keep track of the predefined,
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programmable timing error set point. If the error rate reaches the set point frequency is
increased. Otherwise, it is decreased. This mechanism is shown in Algorithm 2. The algorithm
calls the subroutine, FREQUENCY TUNING(). This module takes care of calculating the
next frequency level depending on the error rate. The pseudocode for this is described in
Algorithm 3. Frequency is tuned up if the parameter passed is +1, and tuned down if it is —1.
Note that although the algorithm involves three modes (ARFSMODE), we only implement

mode ARFSMODE =1 for rop.

Algorithm 2 DFS without thermal control; SPRIT3E like

if ((sim_cycle — sim_cycle_old) > Fcycles) then
sim_cycle_old = sim_cycle;
if (timing_error_counter > ErrorLimit) then
FREQUENCY TUNING(-1)
else
FREQUENCY TUNING(+1)
end if
end if

Algorithm 3 Dynamic frequency tuning: FREQUENCY_TUNING(tune)
// Takes parameter +1

if (ARFSMODE == 1||ARFSMODE == 2) then
if (x == 4+1)&&(flevel < FLEVEL — 1) then
flevel + +;
else if (x == —1)&&(flevel > 0) then
flevel — —;
end if
else if (ARFSMODE == 3) then
if z == +1 then
flevel = BINSRCH (flevel, FLEVEL);

else if £ == —1 then
flevel = BINSRCH (0, flevel);
end if
end if

Fpenalty(new_frequency); timing_error_counter = 0;
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3.3.1.4 Thermally Throttled ROP: trop

In order to bring in thermal control in reliably overclocked processor, the most straightfor-
ward solution is to introduce frequency throttling during thermal emergencies, which is what
we adopt. From Algorithm 4, it can be observed that the only point where this method differs
from rop is while checking the condition. Here, there is an additional checking condition for
maximum processor temperature. Further, to keep the control scheme simple, we assumed

same sampling interval for thermal sensors and error counter.

Algorithm 4 Thermal control with only DFS (NO DVS/DVFS); Thermal
control in SPRIT3E

if ((sim_cycle — sim_cycle_old) > Fcycles) then
sim_cycle_old = sim_cycle;
if ((maz_current_temperature > Tecritical)||(timing_error_counter > ErrorLimit))
then
FREQUENCY TUNING(-1)
else
FREQUENCY TUNING(+1)
end if
end if

3.3.1.5 Dynamic Voltage, Aggressive and Reliable Frequency Scaling: dvarfs

In DVARFS, there are mainly two control mechanisms involved, as mentioned before. The
procedure is described in Algorithm 5. The thermal control loop checks for the sensor tem-
perature during every sampling interval. If the temperature exceeds critical temperature, the
voltage is stepped down. Otherwise, it is stepped up similar to DVFS. If the temperature
exceeds the critical limits even at the lowest voltage level, then we start to step down fre-
quency to the lowest level, disabling overclocking. This is a distinguishing feature of DVARFS
compared to DVFS. In the cases where the temperature is below critical limits, we still have
opportunity to improve performance through overclocking. In those cases, we keep track of
the timing error counter separately and call the FREQUENCY - TUNING() sub-routine ac-

cordingly. We implement three modes (ARFSMODE) while doing frequency scaling, namely,
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ARFSMODE = 1 or low-to-high frequency scaling (lohi), ARFSMODE = 2 or high-to-low
frequency scaling (hilo), and ARFSMODE = 3 or binary search frequency scaling (bin),
based on how we switch from one frequency level to the next. In lohi, the DFS is similar
to that in rop, where we start at the lowest frequency level and progressively move to higher
frequency if timing error occurrences are under the control limit. Mode hilo is just opposite
of lohi. hilo is a very optimistic approach where we start at the highest frequency level and
progressively step down until error rate is under threshold. In bin, we employ a binary search

algorithm to find the optimal frequency level.

Algorithm 5 Dynamic voltage, aggressive and reliable frequency scaling

if ((sim_cycle — sim_cycle_oldv) > Vcycles) then
sim_cycle_oldv = sim_cycle;
if ((max_current_temperature >= T'stepdown)) then

if (vlevel > 0) then
vlevel — —;
Vpenalty(new frequency);

else
signal(PANIC); //Temperature Exceeded at Minimum Voltage Level; Bringing Fre-
quency Down!
FREQUENCY TUNING(-1)

end if

else

if (vievel < (LEVELS — 1)) then
vilevel + +;
Vpenalty(new_frequency);
end if
end if
else if ((sim_cycle — sim_cycle_old) > Fcycles) then
if (timing_error_counter > ErrorLimit) then
FREQUENCY TUNING(-1)
else
FREQUENCY TUNING(+1)
end if
end if

We simulated six SPEC INT 2000 workloads, namely bzip2, crafty, gap, gzip, mcf and
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vpr and seven SPEC FP 2000 workloads, namely applu, apsi, equake, galgel, lucas, mesa and
mgrid, to analyze the experiments with the system deploying the DVARF'S scheme. For all the
modes that involves timing speculation, we assume the timing error set point to be 5%. That
is, we do not allow more than 5 timing errors in 100 cycles. The initial steady state thermal
states are assumed to be same, and equal to Simple scheme. All other simulator parameters

are illustrated in Table 4.1.

3.3.2 Performance

From Equation 3.3, we measured the speed up for all the modes with simple mode as base.
The speed-up charts are illustrated in Figure 4.3. In general, integer workloads perform better
compared to FP workloads due to lesser computational density of the former over latter. It is
evident that DVARFS in general performs better than simple and other schemes. Especially,
hilo outperforms all other schemes across all workloads. This is because hilo starts with the
maximum frequency and slows down according to the error occurrences. bin performs mod-
erately well, with performance gain across all workloads. lohi performs well for few integer
workloads, viz., bzip2 and gzip. However, the loss of performance in lohi mode is found to
be not more than 3% in both integer and floating point workloads. This suggests that typical
workloads (integer and floating point) tend to have very low occurrences of timing violations
that show up as errors for most of the operating frequencies (past worst-case limits). This is
quite evident from hilo performance. It is because of the same reason that bin shuttles between
acceptable and unacceptable frequency ranges leading to lower performance improvement com-
pared to hilo. For lohi, by the time it reaches optimal frequency, it has already lost the much
of the chance for performance enhancement. Moreover, in this time the processor will also
eventually approach thermal emergency causing voltage scaling. This happens over and over
throughout execution resulting in a very small opportunity for enhancement. Using DVARFS
it is possible to achieve up to 40% performance improvement including the stall cycles for the
5% error rate.

The most widely accepted power management scheme, DVFS (dvfs), suffers a moderate
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performance loss around 4 — 5% across all workloads. This is a smaller number compared to
the typical dvfs, as we consider only thermal emergencies to be the controlling factor (DVFEFS
is generally applied for controlling power/energy dissipated within a budget).

Reliable overclocked processor (rop) performs best only next to hilo. It is normally expected
that rop to outperform all the other modes, as it does not involve thermal control loop. The
only thing to restrict its performance is the frequently occurring timing errors. Actually, the
lower speed-up compared to hilo is majorly due to the fact that rop considered here is the
simple ROP [65] which works similar to lohi. An improved version of ROP is possible and can
be expected to perform better than other modes, but is beyond the scope of the thesis.

We tried to bring in thermal control in ROP (¢rop) where the frequency is throttled during
both timing errors and thermal emergencies. However, results show that there is a significant
performance loss by doing this. The performance loss reflects how often thermal emergencies
occur during workload running. It also shows that scaling voltage down is a more effective
way of controlling temperature for longer running time (cubic reduction in dynamic power as
opposed to linear reduction). Note that we assumed all the modes (wherever applicable) to run
for 5% target error rate [66]. trop has its own advantages, especially when processor lifetime
is the major concern in the absense of voltage scaling, as we shall see in the later part of this

section.

3.3.3 Power

The average power is normalized to simple mode as shown in Figure 3.6. It is quite
obvious why rop has power consumption a lot higher compared to all other modes, as rop
does not have a control loop for power or temperature. There is not much difference in
its behavior from integer to floating point workloads. Power consumption for DVARFS is
25 — 30% lower compared to simple scheme. This shows how DVARF'S, in addition to thermal
controlling scheme, is effective as a power management scheme. Among the three dvarfs mode,
bin dissipates the least power as the mode can easily switch between lower (safe) and higher

(unsafe) frequency ranges. lohi follows next, as it operates relatively at smaller frequencies
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Normalized Performance for SPEC Integer Workloads
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Figure 35 | Speed-up chart for SPEC INT and FP workloads

www.manaraa.com



41

most of the running time. hilo consumes higher power compared to the former two as it
spends most running time in highest frequency levels. However, it manages to converge to an
optimal range without affecting the overall power dissipation. dvfs saves up to 30% power.
It is important to note here that bin saves much more power than dvfs, and lohi performs in
par with dv fs. Although from speed-up perspective trop doesn’t add much, in terms of power

consumption trop performs as good as bin; in some cases saving more than what bin does.

3.3.4 Energy (PDP)

Power delay Product (PDP) measures the energy dissipated during execution. Again, the
PDP reported is the average PDP, normalized with respect to simple and is depicted in Figure
3.7. A quick look back, we observed that trop is one of the most efficient power saving modes.
However, the power delay product reveals that the delay costs much more than the power saved.
In other words, the energy consumed by trop now performs in par with rop, which again does
not save energy any more than simple mode. trop manages to consume 2 — 3% more energy
than rop itself across all workloads. It is very important to note here that DVARFS saves more
energy than DVFS (dvfs), the latter being the most widely used scheme for energy saving. lohi
saves as much energy as dvfs, while bin and hilo save much more. Quite evidently, DVARFS

outperforms all the other modes in optimizing the tradeoff between power and delay.

3.3.5 EDP

Energy Delay Product (EDP) is a widely used metric when the emphasis on delay is an
order higher than the power dissipated. In other words, EDP gives the tradeoff between energy
and delay. The EDP for all workloads are shown in Figure 3.8. In this, trop expends almost
50% more than simple mode in this trade off. Specifically, for integer workloads, crafty, gap,
mcf and vpr, trop touches the 50% mark. Similar is the case for all floating point workloads.
In the case of applu, trop expends almost 60% more EDP with respect to that of simple mode.
rop has lower EDP with savings around 20 —25% compared to simple. In one instance, namely

for the integer workload bzip2, rop performs in par with dvfs. Interestingly, DVARFS modes
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Normalized Power for SPEC Integer Workloads
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Normalized Power for SPEC Integer Workloads
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Figure 3.6 Power chart for SPEC INT and FP workloads
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Normalized PDP for SPEC Integer Workloads
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Normalized PDP for SPEC Floating Point Workloads
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Figure 3.7 PDP chart for SPEC INT and FP workloads
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have EDP savings better than DVFS. lohi performs better in the case of bzip2. For all the
other workloads, lohi saves as much as dvfs does. bin and hilo saves more than dvfs in all
the cases, with hilo outperforming bin. hilo consistently saves around 50% EDP savings for

all workloads and over 60% is reported for the integer workloads bzip2 and gzip.

3.3.6 ED?

ED? is a metric that has recently gained popularity, especially among handheld and battery
operated devices. It is the product (trade off) of EDP and delay. The significance of this metric
is that it allows a voltage independent analysis. It has been shown in literature that this is
a better metric than the energy delay product, in a sense that optimal ED? implies optimal
energy and delay [67]. Figure 3.9 illustrates the ED? for all workloads. As the order of the
delay product increases, the percentage expended by TROP worsens. For ED2 metric, trop
consumes over 100% (in some cases, close to 150%) in ED2. From this we can infer TROP is
not a good solution for energy constrained systems. Surprisingly, rop performs close to dvfs.
In few instances, as in integer workloads, bzip2 and gzip, and, floating point workload, mgrid,
rop outperforms dvfs in terms of ED2. Once again, DVARFS performs the best compared to
other modes. lohi saves 40 — 50% ED? compared to simple mode. hilo on the other hand
reports 60 — 75% ED? savings. bin performs in between lohi and hilo.

It is very interesting to note that DVARFS handles performance, power and energy based
metrics exceptionally well proving it to be a powerful technique to adopt in the future systems.
The most important thing to be noted here is that the trade off is well handled between
different modes of DVARFS suitable to the required metric we are interested in. In simple
terms, DVARFS possesses the advantages of DVFS and ROP and it is least affected by their
limitations, which helps it to suit for all kinds of systems from handheld devices to high

performance processors.
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Normalized EDP for SPEC Integer Workloads
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Normalized EDP for SPEC Floating Point Workloads
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Figure 3.8 EDP chart for SPEC INT and FP workloads
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Normalized ED? for SPEC Integer Workloads
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Normalized ED? for SPEC Floating Point Workloads
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Figure 3.9 ED? chart for SPEC INT and FP workloads
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Figure 3.10 Voltage, frequency and error trace for SPEC INT (bzip2) and
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Figure 3.11 Temperature, MTTF and power trace for SPEC INT (bzip2)
and FP (applu) workloads
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3.3.7 Comparative Study of DVARFS with Base Execution

Tables 3.2 and 3.3 show the mean minimum and maximum execution for all SPEC integer
and floating point workloads, respectively. In order to eliminate the bias we excluded the
initial warm up phase of execution and obvious outliers in the data set. We compare the
values of different metrics for each mode with that of simple and estimate the percentage
increase or decrease. The difference is represented as positive and negative signs. Gain or loss
is determined by the sign of the difference and metric itself. For instance, for a given mode,
a positive difference in frequency metric is considered as a gain as it supports performance
improvement, while that is considered as a loss if it had been a power related metric. We will
explain the significant data points in each metric for all the modes.

We observed that for integer workloads, voltage selection range is higher in DVARFS in
general than floating point workloads. Whereas, dvfs has the same switching range. [lohi
and dvfs have similar profile with 8 — 24% lower voltage operating point. bin and hilo work
closely with respect to voltage switching. In the case of FP workloads, both bin and hilo spend
majority of time at the lowest voltage level. Evidently, rop and trop work at the same voltage
level as simple.

There is not any difference in the operating frequency of lohi in the integer workloads. It
gets worse in the case of FP. This explains the trivial performance contribution and overhead
suffered by lohi in the overall speed up. bin shifts between +12% to —10% in the case of
integer workloads. bin performs better for FP workloads. The gap between the maximum and
minimum is smaller in the case of hilo. It should also be noted that hilo provides significant
gain.

The 5% error margin is maintained throughout execution. Typically, the timing speculation
modes suffer 1 — 5% errors at the maximum. As already mentioned, temperature of simple
is around 380K and rop reaches the maximum of 395K, while all the remaining modes are
able to control the temperature within the set limit of 353K. As a result, there is a 23%
loss of device lifetime in the case of rop, and up to 70% gain is possible through any of the

temperature control technique.
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The minimum power savings for dvar fs is 16% as it is observed in the FP workloads and
a maximum of 50% is observed in the integer workloads. Significant savings is observed for all
the energy related metrics in the case of dvarfs modes. trop suffers from 100 — 300% loss for
the energy based metrics.

Table 3.2 Comparing various performance metrics for non-overclocked, re-
liably overclocked processors and DVFS with DVARFS executing

SPEC2000 integer benchmarks

simple lohi bin hilo
METRIC Max, Min | %Diff | Max, Min | % Diff | Max, Min | % Diff | Max, Min | % Diff
VOLTACE (V) 1.25 - 1.15 8 -1.05 -16 -1.05 -16
1.25 - 0.95 -24 -0.95 -24 -0.95 -24
FREQUENCY (GHz) 2.50 - 2.50 - 2.80 12 3.25 30
2.50 - 2.50 - 2.25 -10 3.10 24
ERRORS - - < 500 5 < 100 1 < 150 1.5
- - < 50 0.5 < 50 0.5 < 50 0.5
TEMPERATURE (K) 380 - 358 -6 358 -6 360 -5
353 - 353 - 353 - 353 -
MTTF (Years) 6.5 - 11.0 70 11.0 70 11.0 70
POWER (W) 25.0 - 20.0 -20 15.0 -40 18.5 -26
25.0 - 12.5 -50 13.0 -48 18.4 -26
PDP (x1073J) 9.0 - 8.0 -11 5.5 -39 5.5 -39
9.0 - 5.5 -39 5.5 -39 5.5 -39
EDP (x10~%Js) 2.75 - 2.68 -3 2.50 -10 2.38 -13
2.75 - 2.50 -10 2.40 -12 2.38 -13
ED? (x1079 Js?) 1.25 - 1.20 -4 1.15 -8 1.00 -20
1.25 - 1.10 -12 1.12 -10 1.00 -20
dvfs rop trop
METRIC | Max, Min | % Diff | Max, Min | % Diff | Max, Min | % Diff
VOLTAGE (V) - - 1.15 -8 1.25 - 1.25 -
- - 0.95 -24 1.25 - 1.25 -
FREQUENCY (GHz) - - 2.40 -4 3.10 24 2.25 -10
- - 2.25 -10 3.00 20 1.18 -52
ERRORS - - - < 150 1.5 < 250 2.5
- - - < 50 0.5 < 50 0.5
TEMPERATURE (K) - - 358 -6 395 4 358 -6
- - 353 - 353 - 353 -
MTTF (Years) - - 11.0 70 5.0 -23 11.0 70
POWER (W) - - 20.0 -20 30.0 20 18.0 -28
- - 12.5 -50 29.0 16 12.0 -52
PDP (x10=37J) - - 8.0 -11 9.0 - 10.0 11
- - 5.5 -39 9.0 - 9.5 5
EDP (x10~5%Js) - - 2.70 -2 2.65 -4 6.50 136
- - 2.50 -9 2.65 -4 5.00 81
ED? (x1079 Js?) - - 1.24 -8 1.20 -4 5.00 300
- - 1.20 -4 1.20 -4 2.50 100
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Table 3.3 Comparing various performance metrics for non-overclocked, re-
liably overclocked processors and DVFS with DVARFS executing
SPEC2000 floating point benchmarks
simple lohi bin hilo
METRIC Max, Min | % Diff | Max, Min | % Diff | Max, Min | % Diff | Max, Min | % Diff
VOLTAGE (V) 1.25 - 1.15 -8 0.95 -24 0.95 -24
1.25 - 0.95 -24 0.95 -24 0.95 -24
FREQUENCY (GHz) 2.50 - 2.49 -1 3.00 20 3.30 32
2.50 - 2.30 -8 2.49 -1 3.20 28
ERRORS - - < 250 2.5 <120 1.2 < 130 1.3
- - < 50 0.5 < 50 0.5 < 50 0.5
TEMPERATURE (K) 380 - 358 -6 358 -6 360 -5
353 - 353 - 353 - 353 -
MTTF (Years) 6.5 - 11.0 70 11.0 70 11.0 70
POWER (W) 25.0 - 21.0 -16 15.0 -40 18.0 -28
25.0 - 13.0 -48 13.0 -48 17.0 -32
PDP (x1073J) 9.0 - 8.0 -11 5.5 -38 5.5 -38
8.8 - 5.5 -37 5.0 -43 5.5 -37
EDP (XlO_bJs) 2.75 - 2.78 1 2.50 -10 2.38 -13
2.75 - 2.50 -10 2.40 -13 2.38 -13
ED? (x1079 Js?) 1.25 - 1.20 -4 1.15 -8 1.05 -16
1.25 - 1.10 -12 1.13 -10 1.00 -20
dvfs rop trop
METRIC | Max, Min | % Diff | Max, Min | % Diff | Max, Min [ % Diff
VOLTAGE (V) - - 1.15 -8 1.25 - 1.25 -
- - 0.95 -24 1.25 - 1.25 -
FREQUENCY (GHz) - - 2.49 -1 3.10 24 1.50 -40
- - 2.30 - 3.00 20 1.35 -46
ERRORS - - - <130 1.3 <125 1.25
- - - <50 0.5 <50 0.5
TEMPERATURE (K) - - 358 -6 395 4 358 -6
- - 353 - 353 - 353 -
MTTF (Years) - - 11.0 70 5.0 23 1.0 70
POWER (W) - - 200 20 29.0 16 16.0 36
- - 13.0 -48 28.0 12 13.0 -48
PDP (x1073J) - - 8.0 11 9.0 - 9.0 -
- - 5.5 -37 8.8 - 8.8 -
EDP (x10~5Js) - - 2.70 -2 2.75 - 7.40 169
- - 2.50 -9 2.75 - 6.20 125
EDZ (107 Js?) - N 1.24 1 1.20 1 5.10 308
- - 1.20 -4 1.20 -4 3.75 200
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Execution Traces

In the forthcoming parts of the chapter, we show how execution traces for various metrics
during run time for selected workloads. Figures 3.10, 3.11 and 3.12 depict the traces cycle by
cycle for half for the first half a million cycles. For explanation purpose, we illustrate only two
benchmarks here. We selected one each from SPEC INT and FP, namely, bzip2 and applu,

respectively. Execution trace for all the workloads are provided in Appendix A.

3.3.8 Voltage Trace

Figure 3.10 illustrates the voltage trace two instances of benchmarks. It is evident to note
that simple, rop and trop stay at 1.25V. All modes that have voltage control enabled switches
to 1.05V almost as as soon as execution starts, and never goes back to 1.25V (the highest
voltage level). dvfs and lohi switches between the remaining three levels, while bin and hilo

switches to the lowest voltage level (0.95V') and stays there till the end of execution.

3.3.9 Clock Frequency Trace

The second part of Figure 3.10 illustrates the frequency switching profile during execution.
Again, simple stays at 2500M H z, which is the base frequency. dvfs fluctuates between only
two levels. There are only as many frequency levels as voltage levels in the case of DVFS.
Similar trend observed in the case of lohi. bin fluctuates back and forth. This is mainly due
to error rate and not thermal emergencies. hilo stays at the maximum frequency level under
tolerable error rate. The point to be noted here is that the overclocked frequency at the lowest

voltage level is still over the operating frequency of simple. Following is inferred from this:
1. Performance enhancement is achievable even at the lowest voltage
2. Timing error occurrence is tolerated even at highest frequency levels

rop performs similar to hilo. In spite of overclocking capability, trop has to operate at lower
frequencies so as to handle thermal emergencies. In due course of run time, it slowly converges

to a point where the optimal frequency for both temperature and performance is reached.
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3.3.10 Error Trace

Final portion of Figure 3.10 shows the error profile during execution. There are no errors
for simple and dvfs modes as they work at conservative frequency limits. Small spikes are
observed at constant intervals for rop, trop and all DVARFS modes. It is more profound in
lohi because of the frequent voltage switching. Every time voltage switches, the control loop
starts the frequency search afresh from the lowest level. In the case of bin and lohi there is not
much voltage switching during most part of execution. trop has a high spike for bzip2. Apart

from few spikes, the error occurrence is well controlled in trop.

3.3.11 Temperature trace

Temperature traces for all modes across all workloads are presented in Figure 3.11. Tem-
perature gradually climbs over 380K (simple) when left uncontrolled. It should be pointed
here that the break down temperature limit for digital circuit is close to 378 K. We assumed
363K to be the critical temperature limit. rop exceeds 390K . DVARFS performs in par with
DVFS by effectively controlling temperature within critical limits. Interestingly, trop main-
tains the temperature as effectively as DVARFS and DVFS. This is an important point to be
considered, as TROP proves to be effective way of controlling temperature of the processor in

the absence of dynamic voltage scaling.

3.3.12 MTTF Trace

We tracked down the Mean time To Failure (MTTF) during execution using the models
described in Section 2.3.2 as shown in Figure 3.11. All the modes that control temperature
effectively reports MTTF over 10 years. simple ends up with MTTF close to 5 years, whereas

rop is around 3 years and has the least MTTF out of all the modes.

3.3.13 Power Trace

Power trace during workload execution is shown in Figure 3.11, third row. Quite intuitively,

rop dissipates the maximum power, close to 30W. It is to be noted that all the DVARFS
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configurations start with the same power state as rop since the initial voltage and frequency
settings are the same. Also, simple and dvfs start from the same level. We observed that
dvar f s soon adapts itself to the temperature requirements and performs in par with dvfs. We
see that there is not much power fluctuations in hilo, as opposed to lohi or bin. lohi fluctuates
the maximum. This is because, every time there is a power level switching, all the levels lohi
had gained is lost. Power level switching in dv fs and trop at regular intervals is also constantly

observed.

3.3.14 Energy Metric Traces

Figure 3.12 illustrates the profile traces of PDP, EDP and ED?, respectively, for the selected
integer and floating point workloads. dvfs and lohi shuttles between the high and low states
for all the three metrics. However, the gap between the levels is relatively reduced as it goes
from PDP, EDP to ED?. trop is affected the most by the delay product. hilo and bin have
more regular and stable profile throughout execution. Such is the case for simple and rop as

well, however, the magnitudes are way too higher.

3.4 Summary

One of the main hurdles in realizing timing speculation in practical circuits is their barrier
they pose towards harnessing power dissipation in nanoscale circuits. Higher power density
escalates chip temperature, which is a serious threat. In this chapter, we presented an overview
of power impact on chip temperatures and analyzed its effect on lifetime reliability. We consid-
ered a typical reliable overclocking framework and studied its thermal behavior compared to
worst case design. We made the case for the need of a powerful thermal management scheme
in reliably overclocked circuits.

We presented an efficient technique for enhancing performance and managing on-chip tem-
perature by allowing dynamic voltage-frequency pairing. We built a feedback control system
called DVARFS, exploring a new direction to manage on-chip thermal conditions to achieve

maximal performance benefits. The DVARFS mechanism is an aggressive yet reliable frame-
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work for energy efficient thermal control. DVARFS facilitates to reliably overclock the proces-
sor under thermal bounds at target lifetime with a programmable error rate. We established
an extensive simulation framework environment, integrating various tools to perform our simu-
lation studies. Using this framework we have shown that it is possible to achieve power savings
in par with existing DVFS scheme despite exceeding the worst-case operating frequency. The
significance of this approach is that the system operates under controlled power, under a given
temperature set point and still yield performance enhancement. With this aggressive approach,
we were able to achieve up to 40% speed-up compared to a base scheme with no overclocking.
We also compared other metrics against different schemes and found that DVARFS invariably
performs better. We observed 75% ED? savings relative to base architecture. In comparison,
DVFS only saves only about 40%. From our investigation, it becomes evident that controlled
reliable overclocking is indeed a beneficial way to enhance performance taking into considera-

tion about thermal constraints.
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CHAPTER 4. MANAGING CONTAMINATION DELAY

Timing Speculation (TS) is a widely known method for realizing better-than-worst-case
systems. Aggressive clocking systems have TS as their central theme and operate at a clock
frequency range beyond specified safe limits, exploiting the data dependence on circuit critical
paths. However, the margin for performance enhancement is restricted due to extreme dif-
ference between short paths and critical paths. In this chapter, we show that increasing the
lengths of short paths of the circuit increases the margin of TS, leading to performance im-
provement in aggressively designed systems. We develop an algorithm to efficiently add delay
buffers to selected short paths while keeping down the area penalty. We explore the possibility
of increasing short path delays further by relaxing the constraint on propagation delay, and

achieve even higher performance.

4.1 Background

Microprocessors have traditionally been designed to function reliably for the worst case
timing delays under adverse operating conditions. Such worst case scenarios occur rarely,
allowing possible performance improvement by making common cases faster. Alternative to
conventional methods, the concept of latching data speculatively is called Timing Speculation
(TS) [68, 65, 6, 69, 4, 3]. Dual latch based TS is a widely accepted methodology for designing
better-than-worst-case digital circuits. Timing speculation combined with timing error toler-
ance is a powerful technique to (1) achieve energy efficiency by under-volting, as in Razor [6],
or (2) performance enhancement by overclocking, as in SPRIT3E [65]. They are less expensive
in terms of area and power compared to logic replication.

Dual latch based TS require additional clock routing for replicated latches (or flip-flops)
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that are triggered by a phase shifted clock. Despite the area and routing overheads, the benefits
achieved by dual latched T'S remain immense [6, 32, 3, 70, 71, 72, 73|. However, in [3] it has been
pointed out that the timing benefits realized through speculation is limited by the short paths
of the circuit due to the tight timing constraints in order to guarantee correctness during error
recovery. This problem is compounded when circuits have a significantly lower contamination
delay. It has been shown that for a CLA adder circuit significant performance enhancement is
achieved when its contamination delay is increased by adding buffers, increasing the delay of
all the paths in the circuit above a desired lower bound, while not affecting the critical path
of the circuit is one of the steps performed during synthesis of sequential circuits to fix hold
time violations. However, increasing the contamination delay of a logic circuit significantly,
sometimes as high as half the propagation delay, without affecting its propagation delay is not
a trivial issue [74]. At first glance, it might appear that adding delay by inserting buffers to
the shortest paths will solve the problem. However, delay of a circuit is strongly input value
dependent, and the structure of the circuit plays a role in deciding the value of an output in a
particular cycle. Current synthesis tools support increasing the delay of short paths through
their hold violation fixing option; in a broader sense, what we essentially want to do is that to
extend the hold time of the replicated register.

Traditional delay optimization approaches consider only part of the problem, viz., to ensure
that the delay of each path is less than a fixed upper bound. The closest work we are aware of is
presented in [75], which uses timing optimization algorithm, Sylon-Dream Level-Reduction, for
speeding up multi-level networks. The non-critical paths are processed by an area reduction
procedure to reduce network area without increasing the maximum depth. SDLR uses the
concept of permissible functions in both level and area reduction processes. The existing
techniques only attempt to confine the critical path delay under design specified threshold.
For aggressive timing speculative architectures, in addition to the existing short path timing
constrains free of any hold time violations, the delay optimization algorithms must make sure
that the short paths must satisfy threshold requirements in order to increase the performance

enhancement margin. This is the aspect that makes our work different from any of the existing
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works. Our work is aimed at increasing the contamination delay of digital circuits up to a given
threshold, beyond satisfying hold time violations.

We address three significant issues pertaining to short paths in timing speculation architec-
ture. First, we investigate theoretical analysis of a dual latch TS framework and quantize the
margin for performance enhancement by operating beyond worst case. Second, we study the
impact of short paths on performance on Alpha processor core, where we present a sensitiv-
ity analysis of the speed-up achievable for different settings of contamination delays. In that
process, we establish a case for increasing contamination delay of circuits for aggressive archi-
tectures to relax the margin for performance enhancement. Third, we develop an algorithm
to achieve this goal. Specifically, we build a weighted graph model to represent a multi-level
digital circuit. We showcase a new min-arc algorithm that works on the graph network to
increase short path delays by adding buffers to selective interconnections. We consider each
interconnection, whether it lies on the critical path, short path, or not. Depending upon how
far each section of the circuit is from the maximum and minimum delayed paths, fixed delays
are added. The algorithm is evaluated on ISCAS’85 benchmark suite. In our simulations, we
investigate the increase in short path delays with and without relaxing critical path delays of
these circuits. Also, we analyze the area overhead due to the addition of delay buffers. We
were able to increase the contamination delay to 30% of the circuit critical path length without
affecting its propagation delay. We further increase the contamination delay by relaxing the
constraint on the propagation delay by allowing it to be increased by a small amount for a

larger gain in performance.

4.2 Existing Works for Managing Circuit Path Delay

Early works on timing verification involved identification and categorization of long paths
as either false paths or sensitizing paths [76]. Long paths that are false paths (paths with no
activity) unnecessarily increase the circuit critical delay. Therefore, detecting false paths and
mitigating them is a critical issue in digital circuits even to this day [77, 78, 79].

As already mentioned in Section 4.1, not many works are done keeping short paths in mind.
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Sylon-Dream accomplishes faster multi-level networks by its level reduction technique (SDLR)
[75]. The non-critical paths are processed by an area reduction procedure to reduce network
area without increasing the maximum depth. SDLR uses the concept of permissible functions
in both level and area reduction procedures. Gate resizing and buffer insertion are two major
techniques for critical path optimization. Critical path selection instead of sensitization is
suggested for performance optimization [80]. Here the objective is to select a small set of
paths to ease the optimization process by guaranteeing the delay of the circuit to be no longer
than a given threshold. Several optimization techniques, involving clustering, logic analysis
and gate resizing are proposed in [81, 82, 83, 84, 85]. A statistical timing analysis approach
is investigated in [86]. A re-timing and re-synthesis approach is presented in [87]. This work
suggests re-synthesizing the circuit to expose signal dependencies. The optimization scheme
tightly constrains logic re-synthesis, so that the re-synthesized circuit is guaranteed to meet
the performance target.

Although there are several delay optimization approaches proposed in literature, all of
them try to hold the critical path delay within a threshold. It is fundamental that all the
timing optimization algorithms must consider short path timing constraints. Data latches in
a pipelined architecture inherently possess set up and hold time constraints. It is necessary to
make sure that the resulting circuit has no set-up or hold time violations, to guarantee correct
data transfers. There are algorithms to make sure the circuit is free of any such violations
considering both long and short paths [88]. However, there is hardly any consideration for short
path constraints from the perspective we are dealing with. In this work, we try to alleviate
the contamination delay limitation imposed on aggressive timing speculation architectures.
Therefore, we differ from any of the existing works fundamentally. As far as we know, this
is the first work aimed at increasing the contamination delay of digital circuits up to a given
threshold. It is also important to point out that our algorithm works complementary to existing

synthesis schemes.
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4.3 Timing Speculation Circuits

Traditional design methodologies for the worst-case operating conditions are too conserva-
tive as the critical timing delays rarely occur in tandem, during typical circuit operation. Such
infrequent occurrence of critical timing delays has opened a new domain of study that allows
improvement of processor performance to a greater extent. During execution, since delay in-
curred by the digital circuit is much less than the worst-case delay, this can be exploited by
making common cases faster. Timing speculation is a technique wherein data generated at ag-
gressive speeds are latched and sent forward speculatively assuming error free operation. Error
detection is deployed to detect a timing violation. When an error is detected, the forwarded

data is voided and the computation is performed again as part of the recovery action.
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Figure 4.1 (a) Typical pipeline stage in a reliably overclocked processor (b)
Illustration of aggressive MAIN and PS clocks for circuits with
different contamination delays

4.3.1 Dual Latched Timing Speculation Framework

Let us recall the dual latched timing speculation framework (LFDR) from Chapter 2.
Figure 4.1 (a) presents a black box view of the LFDR circuit in between two pipeline stages.
As it was mentioned previously, to be able to reliably overclock a system dynamically using

LFDR framework, the foremost requirement is to generate the M AIN¢cpx and PScri. The
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two clocks are governed by certain timing requirements that are to be met at all times. LFDR
consists of two registers: a main register clocked ambitiously by M AINcpi at a frequency
higher than that required for error-free operation and a backup register clocked by PScrx at
the same rate as M AIN¢cpi, but phase shifted such that the worst-case propagation delay
time of the combinational circuit. The timing diagram shown in Figure 4.1 (b) illustrates
this. Here, case (i) shows the worst case clock, WC¢ i, with time period ®1, which covers
the maximum propagation delay. Case (ii) shows TS scenario, where the clock time period is
reduced to ®3. The key point to note is that the amount of phase shift, ®o, for the PS¢op i is
limited by the contamination delay, T¢p, of the circuit.
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Stage Error
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Figure 4.2 Timing diagram showing pipeline stage level timing speculation

Figure 4.2 shows timing waveforms that depict timing speculation using LFDR. In the
figure, inst0 moves forward without any timing errors. However, instl encounters a timing
error in Stage i, indicated by corrupted data “terr”. This error is detected by the error
detection mechanism, and the stage error signal is asserted. This stage error signal triggers a
local and global recovery. Timing error recovery flushes the data sent forward speculatively,
indicated in the figure as “zz2”, and voids the computation performed by Stage i+1. Once the
timing error is fixed, the pipeline execution continues normally. It is clear from the waveform

that the time gained by TS is ®4, which is equal to ®,.
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A balance must be maintained between the number of cycles lost to error recovery and the
gains of overclocking. One important factor that needs to be addressed while phase shifting

the PScrk is to limit the amount of phase shift within the fastest delay path of the circuit.

4.4 Impact of Short Paths on Performance

The cardinal factor that limits frequency scaling for LEFDR frameworks is the contamination
delay of the circuit. The phase shift of the delayed clock is restricted by the contamination
delay to prevent incorrect result from being latched in the backup register. Reliable execution
can be guaranteed only if the contents of the redundant register are considered “golden”. To
overcome this limitation, it is important to increase the contamination delay of the circuit.
From Figure 2.3 (b) case (iii) it is easy to notice that a circuit with contamination delay
Ttp > Tep gives a greater margin for T'S.

Let us denote the worst-case propagation delay and minimum contamination delay of the
circuit as Tpp and Top, respectively. Let Tweoork, Twarincrkx and Tpsopk represent the
clock periods of WCer i, MAINcrk and PScrk, respectively. Let Tpg represent the amount
of phase-shift between M AIN¢cpx and PScri. Also we will denote Ty as the overclocked
time period.

At all times, the following equations hold.

1
Tweork =Tpp = 3 (4.1)
MIN
Tyaincrk = Tescrkx = Tov (4.2)
Tpp =Tov + Tps (4.3)
Let Fyrn be the setting where there is no overclocking i.e., Tpy = Tpp. In this case,
Tps = 0. The maximum possible frequency, Fjy;ax permitted by reliable overclocking is

governed by Top. This is because short paths in the circuit, whose delay determine Top, can

corrupt the data latched in the backup register. If the phase shift Tpg is greater than the T p,
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then the data launched can corrupt the backup register at PScrx edge. If such a corruption
happens, then the backup register may get incorrect result and cannot be considered “golden”.
Hence, it is not possible to overclock further than Fysax. The following equations should hold

at all times to guarantee reliable overclocking.

Tps <Tcp (4.4)

1
F <— 4.5
MAX = Tpp —Tep (45)

For any intermediate overclocked frequency, Fryr, between Fyrry and Fayrax, Tps < Top.
During operation, F7y7 is determined dynamically based on the number of timing errors being
observed during a specific duration of time. The dependence of phase shift on contamination
delay leads directly to the limitation of the aggressive frequency scaling. A simplistic notion of
the maximum speed-up that is achievable through reliable overclocking is given by Equation
4.6.

T
Maximum Speedup = # (4.6)
pp —1cpD

4.4.1 Increasing Short Path Delays

It is clear from Equation 4.6 that the maximum speedup is achieved when the difference
between the contamination delay and propagation delay is minimal. However, it must be
noted that increasing Top too much also affects the margin for overclocking. To overcome this
challenge, we develop a technique to increase the contamination delay by a moderate extent
without affecting the propagation delay of the circuit. As outputs of the combinational logic
depends on several inputs, and more than one path to each output exists, with both shorter
and longer paths overlapping, adding buffer delays to shorter paths would increase the overall
propagation delay of the circuit. The main challenge is to carefully study the delay patterns,
and distribute the delay buffers across the interconnections. More importantly, the overall
propagation delay must remain unchanged. However, it may not always be possible to constrain

propagation delay of the critical paths due to logic/interconnection sharing in the network.
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Most practical circuits have significantly lower contamination delay. For instance, we verified
that an 8-bit CLA adder circuit, implemented in 0.18um Cadence Generic Standard Cell
Library (GSCLib), has a propagation delay of 1.06ns, but an insignificant contamination delay
of 0.06ns, thus allowing almost no performance improvement through reliable overclocking. It
should be noted that the outputs of CLA adder depends on more than one inputs, thus a
trivial addition of delay buffers to short paths results in increased propagation delay of the
circuit. However, by re-distributing the delay buffers all to one side (either input or output),
it was possible to increase contamination delay, without affecting the propagation delay, by up
to 0.37ns.

Increasing circuit path delay above a desired level without affecting critical path is not
uncommon in sequential circuit synthesis. In fact, it is performed as a mandatory step during
synthesis operation. In a sequential circuit, for an input signal to be latched correctly by an
active clock edge, it must be loaded (become stable) before a specified time. This duration is
called the set up time of the latch. Again, the input signal must be stable until a specified
time after the active clock edge in order to get sampled correctly. This interval is called the
hold time of the latch. Any signal change in the input before set-up time or after the hold
time does not affect the output until the next active clock edge. Clock skew, which is the
difference in arrival times at the source and destination flip-flops, also exacerbates hold time
requirements in sequential circuits. Hold time violations occur when the previous data at the
input of the destination flip-flop is not held long enough to be latched properly. The data can
change during the hold time window, if the contamination delay of the circuit is less than the
hold time requirements at the destination flip-flop. The hold time requirement for a sequential
circuit is normally a very small fraction of the propagation delay of the circuit. Hence, adding
buffers to short paths that violate hold time criteria is a step that is done without too much
of a concern regarding area and power overheads.

Increasing the contamination delay of a logic circuit significantly, sometimes as high as half
the propagation delay, without affecting its propagation delay is not straightforward [74]. At

first glance, it might appear that adding delay by inserting buffers to the shortest paths will
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Parameter Value

Fetch/ Decode/ Issue/ Commit width | 4 inst/cycle

Functional units 4 INT ALUs, 1 INT MUL/DIV, 4 FP
ALUs, 1 FP MUL/DIV

L1 D-cache 128K

L1 I-cache 512K

L2 Unified 1024K

Technology node 45nm

Base frequency 2.5GHz

No. of freq levels 32

Freq sampling 10us

Freq penalty Ops (Assuming Dual PLL)

Table 4.1 Simulator parameters

solve the problem. However, delay of a circuit is strongly input dependent, and several inputs
play a role in deciding the value of an output in a particular cycle. Current synthesis tools
support increasing the delay of short paths through their hold violation fixing option; in a
broader sense, what we essentially want to do is to extend the hold time of the backup register.

Though it is possible to phase shift to a maximal extent, reducing the clock period by that
amount may result in higher number of errors. Having a control over the increase in contamina-
tion delay gives us an advantage to tune the circuit’s frequency to the optimal value depending
on the application and the frequency of occurrence of certain input combinations. Also, in-
troducing delay to increase contamination delay increases the area of the circuit. Therefore,
while judiciously increasing contamination delay we must also ensure that the increase in area

is not exorbitant.

4.4.2 Performance on Alpha Processor

To demonstrate the effect of increasing short paths on performance, we conducted a simple
study on Alpha processor model for different contamination delay settings. We ran selected set
of SPEC 2000 benchmark workloads on SimpleScalar - a cycle accurate simulator [59]. In order
to embed timing aspects in SimpleScalar, we examined a hardware model of Alpha processor

and obtained the number of timing errors occurring at different clock period, for each workload.
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For this purpose we used the IVM synthesized in Chapter 3. Although we are aware of the
fact that the pipeline in IVM is simplistic, it does not have any impact on our results as we are
performing a comparative study of different settings for the same circuit. We adopt the same
configuration for SimpleScalar simulations as well. The details of the settings are presented in
Table 4.1. Figure 4.3(a) shows the cumulative error rate of three SPEC 2000 workloads for 32
equal intervals, for worst-case delay of 7ns and minimum contamination delay of 3.5ns. The
error profile illustrated is the average values obtained by running the experiment for 100, 000
cycles, and repeating the experiment with different sequences of 100, 000 instructions for each
workload.

We incorporated a timing error injector that induces appropriate number of errors in Sim-
pleScalar. Pipeline stall for one cycle per error occurrence is added correspondingly. As
increasing the contamination delay affects path distribution of the whole circuit, it is likely
that the overall error rate for each workload may go up. In our experiment, we assume uni-
form increase in error rate, denoted as Deuv, for each workload. For our study, we typically
used Dev = 0,3,5 and 7%. Further, we analyze the performance impact of varying CDs with
different target error rates (T'gt). Figure 4.3(b) shows the error occurrence per cycle for bzip2,
equake and gap. Quite evidently, we observed smaller error occurrences for small/no deviation
of circuit, and the error rate tend to increase as the error rate due deviation, Dev, goes up.
However, a small increase in target error rate allows more margins for performance increase.
But, this may not hold true for higher error rates. In general, it was generally observed that
when Dewv gets closer to T'gt, there was an increase in error occurrences. This is more noticeable
in the case of gap.

Since it may not always be possible to increase the contamination delay without affecting
the critical paths, we increase the CD to a threshold limit. As a result, we may end up
increasing the PD. We also experimented with increase in PD by allowing a leeway of a small
percentage of increase in PD. We study the speed-up obtained for different combinations of CD
threshold and PD leeway relative to the performance of aggressive clocking framework with

the original circuit. L (I) — T (t) denotes (% leeway of PD and ¢% minimum threshold of CD.
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We performed our study for [ = 0, 10,20 and 30% and ¢t = 10, 20, 30 and 40%.

We found that in all the cases, performance goes up with threshold values, which is in
agreement with our intuition. In other words, increasing the short path delays allows more
margin for reliable aggressive clocking assuming a moderate target error rate occurrence. It
should also be noted that allowing a leeway on critical paths induces performance overhead.
Normalized speed-up trend of bzip2 workload for various modes of operation is exemplified
in Figure 4.3(c). We have illustrated the results for the modes that yielded performance
gains. The performance of bzip2, equake, and gap benchmarks, for all the configurations we
implemented is shown in Figure 4.4. From the point of view of leeway on PD, our investigation

on relative performance is summarized as follows:
e L = 0 is the best case scenario for performance benefits, yielding from 10— 30% speed-up.

e 0 < L <10 is the effective range for any performance benefits at all, irrespective of T’

L = 20% gives a small increase in performance in the range 0% < Dev < 7%

L = 30% gives a little increase in performance for few cases in the range 0% < Dev < 5%
e L > 30% causes performance overhead even for higher values of T" and smaller Dev

Our experiments reveal that by increasing the delays of short paths up to 40%, subject to
moderate increase in PD (typically 10%), yields up to 30% performance enhancement. Also,
it is very important to keep the increase in error rate due to circuit deviation within 5%. This
guarantees zero overhead even at maximum leeway (L = 30%).

This study establishes a case for change in the existing synthesis algorithms to incorporate
minimum path delay constraints. The major change in this revised algorithm is to increase
the short path delays without (or minimally affecting) the critical path delays of the circuit. A
secondary and passive constraint is to maintain the circuit variation (if not make it better), so
that the deviation causing increase in error occurrences is kept minimal. We will discuss more
on this constraint later. We provide a systematic approach to realize circuits with path delay

distribution that allows greater margin for aggressive clocking for performance enhancement.
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4.5 Min-arc Algorithm for Increasing Short Path Delays

After having a close look at various circuits, we understand that increasing short path delays
invariably increases the area of the circuit and, if not done carefully, affects its propagation
delay. An ideal solution that we would like is to have logic moved from the critical path to the
non-critical paths without using the specified components at the output terminals not getting
affected. This is not always possible. The next best approach would be to increase the delay
of short paths as much as possible without increasing the propagation delay, and keep the
area increase within a limit. As mentioned earlier, short path delays can be increased without
affecting propagation delay for carry look-ahead adders and other smaller circuits. However,
this is done manually, and the area overhead is very high for 64-bit adders. Minimizing short
path constraints, without increasing propagation delay may not be possible for many practical
circuits. In that case, we can allow a small increase in the propagation delay, if that increase
can allow higher margin for TS.

We introduce Min-arc algorithm for increasing contamination delay of logic circuits up
to a defined threshold. We adopt an approach closely resembling min-cut algorithm for flow
networks. The basic idea of the algorithm is to identify a set of edges, from here on we refer it
as the cut-set, such that adding a fixed amount of delay to the set does not affect the delays of
any long paths. However, an important difference between this and traditional flow networks
is that the cut-set for the Min-arc may not necessarily break the flow of the network. But
rather, the cut-set is a subset of edges in the actual (rather traditional) min-cut. The reason
why we do not consider a traditional min-cut is to not unnecessarily add delay buffers where
it is not needed. However, a subset of the min-cut edges is essential to keep the addition of
delays minimal. Another reason for increasing path delay in batches is to keep the structure
of the logic network unaltered from the original network. Benefits of maintaining path delay
distribution is explained in Section 4.6.

The basic outline of the Min-arc algorithm to increase the short path delay of the circuit up
to a required value is presented in Algorithm 6. The entire procedure is divided into six basic

steps, in which the first and last steps are one-time operations, converting the logic circuit to
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an equivalent graph network and vice-versa. The remaining parts of the algorithm modifies the
graph into a weighted graph network and iteratively updates the prepared network by adding
the necessary delay to the selected interconnection using the modified min-cut procedure. The

forthcoming portion of this section is devoted towards explaining each step in detail.

Algorithm 6 Steps for manipulating short path delay in logic circuits

STEP A: Convert combinational circuit to a graph

STEP B: Get minimum and maximum path through every edge

STEP C: Prepare graph for min-cut

STEP D: Do min-cut on the graph obtained in step 3

STEP E: Add delay to the edges returned by min-cut

STEP F: Update the graph and repeat Steps 2 through 6 until contamination delay is
increased up to the required value

STEP G: Convert the graph back to combinational logic circuit

= = = Contamination Delay Path (i) 20 Delay
= - = - Propagation Delay Path emax(ij) Buffer

Figure 4.5 Tllustration: Network model for 4-bit ripple carry adder. (As-
suming unit interconnect and logic delays)

4.5.1 Construction of Weighted Graph Network

The first step is to convert the given combinational logic into a directed graph, where the
logic blocks becomes the nodes, and the interconnections from each logic block to others form
the directed edges. The nodes and edges may be weighted depending on their time delays.

To.this.graph.-we-add-a-source, S, from which edges connect to all the inputs, and a drain,
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Terms Definitions

MAX(i,7) | Maximum path from node i to j, incl. ¢ and j
MIN(i,7) | Minimum path from node i to j, incl. ¢ and j
MAX(S,D) | Propagation delay of the circuit, Tpp
MIN(S,D) | Contamination delay of the circuit, Tep
e(i,7) Edge from node ¢ to j
wt(i, j) Weight of edge from node i to j, not incl 4 and j
emaz(1,7) | MAX(S,i) 4+ wt(i,j) + MAX(j, D)
emin (1, 7) MIN(S,i) +wt(i,j) + MIN(j, D)
LWY Percentage of leeway (0-1) on critical path while adding buffer. E.g., LWY =
x% allows the target network to have Tpp(1 + z) as the final propagation

delay
THD Normalized threshold (from T¢p to Tpp) below which we do not want any
short paths
INF A very large integer value
SCALE A moderate integer value, (> Tpp), to scale the weight to a new range
fune() A function dependent on Tpp, Tep, €max(i,j) and epmin(i,j). Returns
a real number, 0-1. In this work, we define this as % X

(e'min (17]) _TCD)
(I'HD-Tcp)

Table 4.2 Definitions

D, to which all the outputs connect. Note that there is a zero weight for S, D and all the
edges from/to them. Figure 4.5 illustrates an example network model for a 4-bit ripple carry
adder with S and D added. Tpp and T¢p of the logic circuit are highlighted in the figure.
It is necessary to preserve the node types whether they are logic gates, buffer delays, input
or output pins. Also it is important to note the type of logic for a logic gate node. This is

important in order to maintain functional correctness of the circuit.

4.5.2 Finding the Minimum and Maximum Path

Once the directed network is constructed, the next step is to mark the edge weights for
generating the cut-set. Before doing so, we introduce and define several terms and symbols as
illustrated in Table 4.2, which will be used in the remaining steps. We calculate the longest
and shortest distances for every edge from source and drain. That is, we obtain M AX (S, 1),

MAX (gD )edd LN(Syé)wand MIN(j, D) for every edge e(i,j) in the weighted graph. We
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use Djikstra’s algorithm to calculate M AX () and MIN() functions. From this, we calculate
€maz (1, 7) and emin (i, ) for every edge, e(i,j) as described in Table 4.2, which corresponds to
the longest and shortest paths of the logic network through that edge. The paths marking
emin(,7) and emqz (7, j) for randomly chosen nodes ¢ and j for the 4-bit ripple carry example
is depicted in Figure 4.5. In a similar manner, the minimum and maximum weights for every

edge are calculated.

4.5.3 Preparing Graph for Min-cut

From steps B through F we re-construct the prepared weighted graph network as and when
we select a minimum weight interconnection to add the delay buffer. We re-construct the
graph from the previous state using new edge weights. The edge weights are calculated in such
a manner that the minimum weighted arc gives the most favorable interconnection where to
add delay. The procedure for calculating new weights for every edge, e(i,j), is described in
Algorithm 7. The edge, e(i, j) may fall under one of the four categories listed in the algorithm.
For the first two cases, the edge weight is calculated as the sum of e, (7, j) and €44(7, 7). This
is the general scenario where the minimum and maximum paths are added as edge weights.
The former case is the scenario of a short path, where €,,4,(7,j) is smaller than the threshold
for contamination delay. The latter case is when the selected edge, e(i, j), has a delay such that
the shortest path is more closer to the threshold than the longest path is to the propagation
delay. In other words, when a delay buffer is added to any edge in the path to increase the
short path delay by the given threshold, the maximum delay increase affecting a critical path
is still within propagation delay of the circuit. The third scenario is when the longest path
exceeds propagation delay including leeway. This edge is critical and by no means can buffers
be added to this. Hence, we substitute a large number (INF') as the edge weight so that this
edge is never picked as part of the min-cut. Finally, we have a case when delay buffer addition
exceeds or gets very close to the propagation delay. In this case, we scale the edge weight
moderately higher than the original range. This addresses the case where addition of buffer to

any edge affects longer paths.
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4.5.4 Finding the Min-cut

Short paths independent of critical  Short paths with common edges with longer paths
paths. Add buffers to short paths. (but not critical paths). Add buffers excluding the
common edges.

CHom 0 & (>
e

Short paths having common edges with longer paths. All short path delays have
There are no independent short paths. Add buffers to reached the threshold value.
common edges. Longer paths may become critical paths.

Figure 4.6 Illustration of four different scenarios finding the cut-set in
Min-arc algorithm

Once the graph weights are re-assigned, the cut-set is determined. We use a variant of
Edmonds—Karp min-cut algorithm of the graph network. The cut-set consists of edges with
minimum weight in the new graph. Figure 4.6 illustrates the different scenarios in determining
the cut-set. The cut-set re-definition is necessary because the traditional min-cut always has
at least one edge in the critical path. Figure 4.6(a) shows how a logic circuit is divided into
critical and non-critical paths. As long as the non-critical paths are independent of critical
paths, buffer delays can be added to the former ones. In this case, the min-cut excludes all

the critical paths. Generally, the scenario is not this straightforward. As illustrated in Figure
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4.6(b), the short paths are intertwined with longer paths that are not critical paths. In such
cases, the weights of the longer paths are scaled to a different range (in this case K). If there
is a subset of short paths that exist independent of the longer paths, buffer delays are added
to this subset. We noticed that this is the most common scenario in the benchmark circuits.
Once all the independent short paths have been added with corresponding delays, the new
circuit is left out with paths that are scaled as shown in Figure 4.6 (c). Buffer delay is added
to the scaled paths, which runs the risk of modifying longer paths into critical paths. The
final circuit is shown in Figure 4.6 (d), where there are only critical paths and paths that have
delay meeting the threshold requirements. In the ripple carry example, the case is similar to
Figure 4.6 (a). The cut-set is thus all the paths excluding the critical path. Figure 4.5 shows

the min-cut where the buffers are added.

4.5.5 Adding Buffer Delays

The buffers are carefully placed on edges where it would not affect the longest paths. Thus,
the amount of delay each buffer should have depends on the path connectivity, which may have
major impact on the timing error occurrence. For instance, it is possible to add delays such
that all the paths have delay equal to the critical path delay. In most practical circuits, pushing
all the paths to a certain delay interval would result in sudden rise in the timing errors, causing
overhead due to error recovery. So, it is always necessary to keep in mind while designing the
algorithm that there is a gentle rise in path delays from one interval to the other. Buffers are
added on the edges present in the cut-set. The amount of delay added, delay(i,j), for any

edge e(i, j) is given by Equation 4.7.

delay(i,j) = min((THD — enmin(i,7)), (TPp — €maxz(i,7))) (4.7)

The delays for all the edges in a cut-set, for a given iteration, are added at the same time.
While adding delay, we ensure that in the same iteration, to no other edge the delay is added

that are connected to paths through this edge.
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4.5.6 Satisfying Conditions

We iterate steps B through F until the minimum condition for the shortest path is met
or until there is no other edge where delay can be added without affecting Tpp of the circuit
(including LWY"). Step F checks if the desired value of contamination delay is reached. Once
the required conditions are met, no more buffer additions are carried out and we move on to
step G. From our experiments, we found that the minimum condition for contamination delay

is achieved for all the circuits we evaluated.

4.5.7 Converting Graph to Logic Circuit

The final step is to revert back to the original circuit once the short paths lengths are
increased to the desired level. Since we record the node types in the network graphs in step A,
it is possible to re-build the circuit from the graph network with the added buffers. It should be
noted that we do not optimize the logic of the circuit, whereas we only add additional buffers

preserving the original logic of the circuit.

Quantifying Min-Arc Algorithm

The time complexity of Min-arc algorithm is mainly affected by Steps B and D. Let |V|
be the total number of logic blocks (vertices) and |E| is the total number of interconnections
(edges) in the logic circuit. Using Djikstra’s shortest path algorithm, the worst case time to
calculate M AX () and MIN() functions is O(|V|?). For finding the minimum weighted edge
min-cut for the graph network, it takes O(]V||E|?). In the worst case every edge becomes a
part of the cut-set. That is, there are at most |E| iterations. Hence, the overall time complexity

of the Min-arc algorithm is O(|V|?|E| + |V||E|?).

4.6 Evaluation of Min-arc Method

Although the time complexity of Min-arc algorithm is polynomial order, it is necessary
to consider its performance on practical circuits. We evaluate the algorithm on ISCAS’85

benchmark suite [89]. The suite provides a diverse class of circuits in terms of number of I1Os,
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Algorithm 7 Re-calculation of edge weight for edge €44 (7, j)

L if epaq(i, ) < THD then

2: wt(i,)) = emin(i,7) + €max (%, 7)

3: else

4: if (THD — emm(l,j) < (TPD — emam(i7j)) then
5: "Ut(laj) = emzn(zaj) + ema:p(iaj)

6: end if

7. else

8 if epmax(i,7) > (Tpp(1+ LWY)) then
9: wt(i,j) = INF

10: end if

11: else

122 wt(i,j) = SCALE % func()

13: end if

logic gates and interconnections (nets). Table 4.3 lists a brief description and other relevant

details of the circuits. All the circuits were transformed into network graphs as specified in

Section 4.5. The interconnect delays and logic cell delays were obtained by synthesizing the

circuits for 45nm technology using OSU standard cell library [64].

(L(ly — T (t)) described in Section 4.4.2 were investigated.

All the configurations

Circuit | Description Inputs | Outputs | Gates | Nets | Area(Buf)
c¢432 | 27-channel interrupt controller 36 7 205 | 386 5360.698
c¢499 | 32-bit SEC circuit 41 32 277 | 513 7821.103
c¢880 | 8-bit ALU 60 26 471 | 841 | 11791.877
c1355 | 32-bit SEC circuit 41 32 621 | 1169 | 17166.807
c1908 | 16-bit SEC/DED circuit 33 25 940 | 1581 | 24947.760
¢2670 | 12-bit ALU and controller 233 140 1644 | 2665 | 36016.406
¢3540 | 8-bit ALU 50 22 | 1743 | 3033 | 49139.693
cb315 | 9-bit ALU 178 123 2610 | 4810 71726.222
c7552 | 32-bit adder/comparator 207 108 | 3830 | 6568 | 101953.107

Table 4.3 Area increase in terms of buffer delay (ps)

Interesting results were noted in this study. First, for all the circuits, the Min-arc method

was able to increase the short path delays to the desired threshold levels without any leeway

on PD. Even then, we continued with all the configurations to include leeway in order to study

thegeffectrofjineludingsthem: We present the results only of a few selected circuits and average
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of all circuits. It was found that circuit characteristics (i.e., size and connectivity) have strong
effects on how the algorithm performs. Figures 4.7, 4.8, 4.9, and 4.10 illustrate the increase
in the short path delays, and critical path delays, respectively, for different configuration in
c432 and ¢b315 circuits. The charts also show the average increase of these delays for all nine
circuits. For smaller circuits (as in ¢432), we notice that there is not much the algorithm could
possibly do, as there is a higher chance of affecting the critical path by adding delay to any
net. In 432, we notice that the maximum delay increase of short paths from the base circuit
with 91ps, (with 0% leeway) is around 225ps. However, in larger circuits (as in ¢5315), delay
buffers were more easily added. This is seen in ¢b315, where short path delay is increased
from 20ps to 430ps, again with 0% leeway. In other words, as the circuit size increases, the
number of independent short paths also becomes more, allowing easy inclusion of delay buffers.
It should also be noted that there is not much delay increase from L0 to L5 or other higher
levels of leeway on PD. Increasing threshold on the other hand tend to have a great impact in
increasing the CD. On an average, there is a 1.5x factor of increase from one threshold level
to the next for all configurations. Assuming LWY = 0, we were able to achieve 300% — 900%
increase in CD, and increasing LWY steadily from 5 to 30%, we observed increase of CD in
a saw tooth pattern achieving 315% — 1165% increase in CD. It should be observed from the
critical path delay patterns that the algorithm strictly adheres to the critical delay limits.
One major effect of adding buffers to circuits is that it affects path delay distribution.
Although our goal is to increase the CD to a threshold limit, pushing a set of paths to one side
may increase the timing error rate during execution. Therefore, it is important to maintain
the delay distribution of the circuit paths without much deviation. For all the circuits we
tested, Min-arc algorithm was able to closely maintain the path delay distribution. In most
cases, while adding delay buffers, it was possible to shift all the delay intervals to a new level,
thereby maintaining the circuit structure as much as possible. Even though the structure
of the circuit is maintained, the short paths are now pushed to higher delay slots, thereby
increasing the possibility of error occurrences. This corresponds to Dev, mentioned in Section

4.4. However, we expect the increase in error rate to be a nominal value.
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Figure 4.11 illustrates the path delay distributions for selected configurations of two circuits
(432 and ¢7552). We noticed that for ¢432 (and other smaller circuits), the path structure were
mostly maintained. In the case of ¢7552 (and other larger circuits), the circuit structure was
altered moderately. To illustrate this point further, we plotted mean and standard deviation of
all the circuits. Figures 4.12 and 4.13 showcase the distribution plots of each of the circuit and
average of all the circuits. We noted that the smaller circuits suffer from negligible deviation
from original circuit in spite of higher mean, and the larger circuits are vulnerable to change
in structure. From the average plot, it is also evident that higher leeway values cause more
deviation. A maximum deviation of —12% and +16% were observed for T'30L0 and T'30L30

configurations, respectively.

4.6.1 Area overhead

The overhead for Min-arc algorithm is the area penalty. More the circuit allows adding
buffers, more the overhead in chip real estate. We estimate the original circuit area in terms
of buffer delays, and compare the area increase for each of the configurations. This study
facilitates us to narrow down the choices of L and T for any given circuit. Table 4.4 enlists the
percentage area increase for various L and T combinations, for all the circuits. It is important
to choose the configuration that has highest increase in delay with moderate increase in area.

Without any leeway (corresponding to L0), with every 5% increase in T there is around
20% increase in area. This holds for most circuits, except for smaller circuits as in c499 and
¢880, where it is around 10%. A maximum of 100% increase is observed for ¢2670 at T' = 30%.
For this maximum threshold, there is a wide range of area increase across the benchmark
circuits. We did not see any strong relation between circuit size and the area increase. This
means that it is the circuit connectivity that has a major role to play on buffer placements.
For T' = 30%, the minimum area increase of around 10% is observed for the circuit ¢3540.

A general observation from our study is that the area increases with L or T. However, we
observed quite a few configurations, where the area decreases with L or T. This reflects how

the algorithm handles different input combinations independently, rather than building from
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Ckt L0 L5 [ L0 [ Li5 L20 L25 L30
432 [ T10 [ 000.000 | 000.000 [ 000.000 [ 000.000 [ 000.000 [ 000.119 | 000.338
T15 | 002.233 | 001.884 | 002.306 | 002.727 | 003.149 | 003.570 | 003.992
T20 | 010.911 | 014.424 | 005.738 | 006.441 | 007.186 | 008.029 | 008.872
T25 | 027.913 | 034.655 | 010.918 | 012.148 | 012.244 | 013.380 | 014.610
T30 | 055.948 | 062.209 | 070.731 | 019.970 | 020.029 | 019.528 | 021.004
499 | T10 | 001.295 | 002.278 | 003.262 | 004.246 | 005.229 | 006.213 | 007.196
T15 | 011.131 | 012.606 | 014.082 | 015.557 | 017.032 | 018.508 | 019.983
T20 | 020.967 | 022.934 | 024.901 | 026.868 | 028.836 | 030.803 | 032.770
T25 | 030.803 | 033.262 | 035.721 | 038.180 | 040.639 | 043.098 | 045.557
T30 | 040.639 | 043.590 | 046.540 | 049.491 | 052.442 | 055.393 | 058.343
880 | T10 | 000.875 | 001.076 | 001.338 | 001.673 | 002.009 | 002.371 | 002.773
T15 | 004.642 | 005.397 | 006.152 | 006.907 | 007.830 | 008.798 | 009.855
T20 | 013.250 | 015.129 | 013.595 | 015.339 | 017.084 | 018.828 | 020.573
T25 | 024.952 | 035.427 | 023.190 | 025.371 | 027.552 | 029.732 | 031.913
T30 | 032.744 | 037.751 | 049.281 | 035.402 | 038.019 | 040.636 | 043.253
c1355 [ T10 | 000.000 | 000.139 [ 000.893 | 001.647 | 002.401 | 003.155 | 003.909
T15 | 007.900 | 009.566 | 009.189 | 010.320 | 011.451 | 012.582 | 013.714
T20 | 022.983 | 026.000 | 029.016 | 018.993 | 020.501 | 022.009 | 023.518
T25 | 038.066 | 041.837 | 045.608 | 027.666 | 029.551 | 031.436 | 033.322
T30 | 053.150 | 057.675 | 062.200 | 036.338 | 039.330 | 040.863 | 043.126
1908 [ T10 | 003.140 | 003.732 | 004.324 [ 004.915 | 005.507 | 006.099 | 006.690
T15 | 008.066 | 009.944 | 010.832 | 011.719 | 012.607 | 013.495 | 014.382
T20 | 015.359 | 016.111 | 018.340 | 018.524 | 019.707 | 020.890 | 022.074
T25 | 024.749 | 025.100 | 027.090 | 028.884 | 026.938 | 028.286 | 029.765
T30 | 035.196 | 035.855 | 035.942 | 037.866 | 040.209 | 044.067 | 037.457
2670 | T10 | 023.403 | 025.084 | 026.806 | 028.584 | 030.362 | 32.140 | 033.982
T15 | 041.617 | 044.526 | 047.441 | 050.387 | 053.334 | 56.280 | 059.227
T20 | 060.493 | 064.606 | 069.049 | 072.991 | 076.950 | 80.936 | 084.922
T25 | 081.137 | 088.340 | 092.171 | 095.884 | 100.867 | 105.849 | 110.832
T30 | 100.542 | 117.577 | 113.181 | 132.332 | 131.624 | 138.105 | 136.851
3540 [ T10 | 000.624 | 000.696 | 000.768 | 000.840 | 000.937 | 001.038 | 001.139
T15 | 001.982 | 002.810 | 002.708 | 003.085 | 003.474 | 003.883 | 004.293
T20 | 005.350 | 005.159 | 007.636 | 006.366 | 006.969 | 007.573 | 008.177
T25 | 007.657 | 017.588 | 009.916 | 013.920 | 015.115 | 011.390 | 012.181
T30 | 010.828 | 015.571 | 019.480 | 013.445 | 045.045 | 021.419 | 027.415
5315 [ T10 | 007.858 | 011.719 | 012.840 [ 013.972 | 015.136 | 016.306 | 017.477
T15 | 024.559 | 025.690 | 025.784 | 027.600 | 029.417 | 031.233 | 033.049
T20 | 039.732 | 042.558 | 041.610 | 041.613 | 044.074 | 046.536 | 048.997
T25 | 063.509 | 066.116 | 058.342 | 056.139 | 058.843 | 061.920 | 064.996
T30 | 074.338 | 102.908 | 085.120 | 107.317 | 095.169 | 077.304 | 080.996
7552 [ T10 | 005.393 | 05.500 | 005.871 [ 006.265 | 006.663 | 007.068 | 007.505
T15 | 009.431 | 010.237 | 011.069 | 011.919 | 012.795 | 013.698 | 014.611
T20 | 015.342 | 016.454 | 017.846 | 018.954 | 020.243 | 021.532 | 022.822
T25 | 022.605 | 025.980 | 026.880 | 026.368 | 029.263 | 029.592 | 031.204
T30 | 040.318 | 039.191 | 043.577 | 041.745 | 035.718 | 037.652 | 039.586

Table 4.4 Area increase in terms of buffer delay (ps)
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previous level output. We noticed several places where area would decrease with L (shaded
blue in Table 4.4). As illustrated, there is at least one place where this occurs in each circuit,
with the exception of ¢499 and 2670. In the case of T', we see that there are only a couple of
configurations where this occurs, namely in ¢3540 (underlined in Table 4.4). This explains how
target threshold for short paths affect increase in area. In most cases we noticed around 2%
increase in area for every 5% in L. In majority of the cases, we noted only moderate increase
in area (< 50%). We observed 12 cases where the area increase was more than 100%, in which
10 of them are from the same circuit, ¢2670. This is a 12-bit ALU with controller (¢2670) that
has a lot of parallel paths with few common edges. Similar but less intense effect is seen in
the case of the 9-bit ALU (c5315). The configurations where the area increase exceeds 100%

is highlighted orange in the table.

4.7 Summary

Contamination delay is one of the major bottlenecks for achieving higher performance
in timing speculation architectures. In this paper, we investigated the theoretical margins
for improving performance for the dual latch framework. We brought forward the limits to
performance enhancements in timing speculation. Using our analysis, we demonstrated how
much performance improvement is achievable by increasing the contamination delay of the
circuit without affecting the critical path delays. Performance gains were attained even for the
cases affecting propagation delay by up to 10%. We studied further how these gains vary with
target timing error rate.

The main goal of this paper is to increase the short path delays to a specified threshold,
without (or minimally) affecting the critical path delays. We proposed the Min-Arc algorithm
to achieve this goal. We presented the results for ISCAS-85 circuits, where we have shown that
the Min-Arc is able to increase the contamination delay of all the circuits without affecting
propagation delay. We analyzed further as to how much these short paths increase while
allowing a small leeway to critical path delay. We observed moderate area increase in the

circuits implementing the Min-arc algorithm. Finally, we discuss how the algorithm preserves
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the path delay distributions of the circuits and therefore, closely maintaining the rate of timing
error occurrences from the original circuit.

To conclude, Min-arc algorithm successfully increases the contamination delay of logic
circuits with moderate area penalty. The results we have obtained are very promising, opening
up different directions for the near future. Managing short paths leads to different error
rates and power dissipation. Studying the interdependencies between different parameters
certainly helps us understand timing speculation architectures better. Comparative study of
synthesized circuits with and without Min-arc algorithm, and realizing it in hardware, like

FPGAs or ASICs, will make the case stronger for timing speculation in commercial circuits.
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CHAPTER 5. POWER BUDGETING USING DYNAMIC V-F PAIRING

Power management techniques have been well studied in the recent few years. Existing
methods choose one among the different available power states and can precisely control the
dynamic power of the system, to achieve the desired power/energy set point. The aim of an
efficient power management scheme is not only be to reduce power as much as possible, but
also to allow the processor to dissipate only as much as the budget allows. More importantly,
the challenge is to curtail the loss incurred due to power level transitions and circuit slow down
to minimal. As it was illustrated in Chapter 3, the predetermined power states in traditional
DVFS are set at the worst-case level, which leads to significant performance loss. It was also
shown how effectively DVARF'S controls on-chip temperature, and minimizes power dissipation,
while enhancing performance. Although by intuition it is apparent that DVARFS is apt for
energy-efficient power management, it is necessary for us to do a comparative evaluation against
the existing schemes.

In this chapter, we implement a power management strategy similar to Intel SpeedStep.
Our goal is to show the effectiveness of adaptive frequency tuning beyond worst-case boundaries
in dynamic power management within a power budget as opposed to dynamic power level
shifting. We improvise the control mechanism proposed in the earlier chapter, thus making

the system more adaptable, while meeting the power constraints within safe thermal limits.

5.1 Power Dissipation in Aggressively Clocked Systems

In Section 3.1.2, we re-framed the basic performance equations making them suitable for
aggressively clocked processors. In this section we delve further into some of the important

metrics learn more about these systems. From our analysis, we devise an energy-efficient,
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power management scheme. By this we mean that our intention here is to sustain a power

constrained system, while keeping up to the performance as much as one can.

5.1.1 Computation Bounded Workloads

The speed-up expression presented in Equation 3.2 includes three parts. The first part
corresponds to the compute cycles in pipeline without I0/memory access. The final part
corresponds to the timing error recovery associated with overclocking. The remaining part of
the equation represents the fraction of time spent in I0/memory. In DVARFS, the amount of
time spent for recovery is typically one cycle, that is k = 1.

From Figure 5.1(a) it is evident that during traditional DVFS, when frequency is brought
down (¢ < 1), the total execution cycles reduce. This is because of the relatively fewer cycles
spent for memory. The figure shows the effect of frequency scale down on performance for
various memory access factors. For instance, a memory bound workload (say a = 25%) offers
close to 1.5 times more voltage scale down compared to a CPU bound workload (say o = 5%),
for the same performance loss of 15%.

On the other hand, the benefits of reliable overclocking surpass the memory penalties under
controlled error rate. This is clearly understood from the series of charts (b), (¢) and (d) of
Figure 5.1. Here, we depict the speed-up for a spectrum of memory access factors relative to
target error rate, S, for different values of q.

For performance enhancement, the system must tolerate 20%, 50%, 70% and 100% of timing
exceptions at the overclocking rates ¢ = 1.2,1.5,1.7 and 2.0, respectively. In the forthcoming
sections, we show that for practical workloads the number of timing errors produced is quite
low for smaller values of ¢, but quickly reaches 100% for higher values.

Without loss of generality, we assume core activity to be directly proportional to IPC of
the processor core. In order to analyze the effect of frequency scaling on CPU threads, we
ran all the SPEC workloads in two different configurations in simple mode. In our study,
we implemented two different frequency settings, 2.5GH z and 3.4GHz. The core activity for

12 SPEC benchmarks for the two settings are illustrated in Figures 5.2 and 5.3. Each time
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Figure 5.1 Performance analysis of workloads with varied computation

boundedness
SPEC INT bzip2 crafty gap gzip mgrid vpr
%Load/Store | 35.24% | 32.94% | 32.25% | 22.21% | 36.66% | 40.78%
SPEC FP apsi equake | galgel lucas mcf mesa
%Load/Store | 35.83% | 42.53% | 43.34% | 21.76% | 34.30% | 35.79%

Table 5.1 Percentage of load-store instructions in SPEC 2000 INT and FP
workloads

stamp depicts 10,000 cycles. We noticed that the workloads have a slow start for the initial
few time stamps in spite of fast forwarding. From the two traces, we observed that increasing
frequency for certain workloads results in increased activity. In other words, frequency scaling
has positive impact on IPC of the system running computation bound threads. As a result,
these threads while running on a 3.4GHz processor complete execution several time stamps
ahead of those running at 2.5GH z.

Table 5.1 enlists the percentage of load-store instructions in SPEC 2000 benchmark suite.
The data is obtained from [90]. After careful observation, we inferred that all the threads with
the smaller percentage of load-store instructions tend to finish faster than those with higher
fraction of load-store. For instance, bzip2 and lucas are cases in point, where clock frequency

increases core activity resulting in faster execution.
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Figure 5.2 Thread activity trace for SPEC 2000 workloads running at
2.50GHz

5.1.2 Dynamic Power Dissipation

As mentioned earlier, overclocking increases the switching activity of the circuits causing
more dynamic power dissipation. Our intention here is to seek an upper bound on voltage to
save power in the overclocked processor. Eqns (5.1) and (5.2) illustrate the dynamic power
consumed by a non-overclocked system (P,,), operating at voltage V;,, and that of an over-
clocked one (P,,) operating at voltage V,,. Here, o and C are switching activity factor and
circuit capacitance respectively.

Pro = a.C.V2 [tno (5.1)

Py, = a.C. V2 [to, = a.C. V2 .q/tno (5.2)

The above model is quite simplistic and does not account for the memory and timing error
tradeoffs. Moreover, power is a naive metric for analysis when it comes to handheld devices.
Rather, what is important is the impact of power. Power has two major impacts viz., on-chip

temperature and battery lifetime. Considering this we choose (1) power-delay-product or the
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Figure 5.3 Thread activity trace for SPEC 2000 workloads running at
3.4GHz

energy and (2) maximum and average temperatures for our study.

5.1.3 Energy Dissipation

The energy for the overclocked system is given by FE,,, as shown in Eqn 5.3. Again, by

proper substitution we find FE,,,, the energy for a non-overclocked system.

Eyy = Pyy.n.(14 a.q.Cp, + Se.k) Loy (5.3)

Upon simplification, we get the following upper bound for energy savings.

gx (14 a.Cy)
1+ a.q.C, + Se.k

Poy < ( )-Pro (5.4)

5.2 History Based Profile Prediction

The feedback loop in DVARFS is a simple cycle that regulates voltage up or down by a

interval. One of the drawbacks in such a scheme is that the system
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takes time to converge on a power budgets. This results in loss of efficiency. The second
limitation is that the processor tends to get stuck at the lowest voltage level, and continue to
work at a higher clock rate (with highest allowed error occurrences). This may not turn out
to be the optimal selection of a V' — f pair. Choosing an optimal energy-aware power level is a
hard problem. A reasonable objective is to adjust the V — f pairs according to the workloads.
In other words, it is wasteful to run the processor at higher frequency levels while executing
memory bound workloads.

We implement a simple prediction scheme for estimating the workload activity during the
next sampling interval. We adopt a technique similar to those in the literature. The basic idea
is to track the processor pipeline activity during the sampling interval. The window size, to
select the number of sampling intervals to be tracked down is decided depending upon which

one helps to predict the activity accurately.

5.3 Evaluation

Table 5.2 shows comparative study results of power budgeting between DVFS (dvfs) and
DVARFS (dvarfs). We used a random mix of SPEC integer and floating point benchmarks
to create different number workloads for each run. Specifically, we tried three set of workload
numbers, 32, 64 and 128. As mentioned earlier we used history based profiling for different
window sizes (1,2,5 and 8). The window sizes refer to the number of sampling intervals used
to predict activity during the next interval. Although we tried the experiment for different
window sizes, we did not find a specific trend in any of the metric.

We set the power budget at 25 Watts. It is clearly observed that DVARFS provides a finer
grained power supply compared to DVFS. This is due to the fact that DVARF'S allows dynamic
pairing of voltage and frequency levels. In spite of keeping up with the power constraints,
DVARFS is able to run the processor at a higher frequency than DVFS due to reliable and
aggressive frequency scaling. In general DVARFS runs at 2.71 GHz compared to DVFS running
at 2.5 GHz. Energy and ED? trends are similar to the one observed in Chapter 3. DVARFS

generally outperforms DVFS in both these metrics as well. This is obvious after looking at
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the lower power dissipation and higher operating frequency from DVARFS. A very important
thing to be noted here is that the number of timing errors is controlled within a predefined

budget. In this case we assume the timing error set point to be 5%.

Table 5.2 Comparative study results of power budgeting between DVFS

and DVARFS
WORKLOADS=32 | WORKLOADS=64 | WORKLOADS=128
WINDOW=1 dvfs ‘ dvarfs dvfs ‘ dvarfs dvfs ‘ dvarfs
Avc FrEQ (GHz) 2.52 2.71 2.50 2.71 2.51 2.72
PowegRr (W) 22.73 20.20 21.74 19.93 22.21 20.27
Ava AcCTIVITY 0.63 0.50 0.54 0.50 0.55 0.51
ENERGY (J)(x1073) |  0.54 0.52 1.12 0.98 2.38 2.02
ED? (Js?) 1.03e-10 | 0.003e-10 | 1.07e-10 | 0.02e-10 | 1.34e-10 0.23e-10
WORKLOADS=32 | WORKLOADS=64 | WORKLOADS=128
WINDOW=2 dvfs ‘ dvarfs dvfs ‘ dvarfs dvfs ‘ dvarfs
Avc FrEQ (GHz) 2.51 2.70 2.50 2.71 2.50 2.72
PowegRr (W) 22.21 20.04 21.66 20.14 21.81 20.26
Avac AcTiviTy 0.34 0.59 0.44 0.50 0.43 0.79
ENERGY (J)(x1073) | 0.62 0.57 1.23 1.14 2.47 2.097
ED? (Js?) 1.35e-10 | 0.23e-10 | 1.39e-10 | 0.27e-10 | 1.71e-10 0.49e-10
WORKLOADS=32 | WORKLOADS=64 | WORKLOADS=128
WINDOW=5 dvfs ‘ dvarfs dvfs ‘ dvarfs dvfs ‘ dvarfs
Avc FreQ (GHz) 2.51 2.74 2.50 2.73 2.50 2.73
Powgr (W) 22.14 20.80 21.91 20.37 21.86 20.48
AvG AcTIvVITY 0.24 0.44 0.23 0.46 0.24 0.30
ENERGY (J)(x1073) 0.54 0.52 1.17 1.02 2.44 2.12
ED? (Js?) 1.71e-10 | 0.50e-10 | 1.74e-10 | 0.52e-10 | 2.05e-10 0.75e-10
WORKLOADS=32 | WORKLOADS=64 | WORKLOADS=128
WINDOW=8 dvfs ‘ dvarfs dvfs ‘ dvarfs dvfs ‘ dvarfs
Avc FrREQ (GHz) 2.50 2.74 2.50 2.69 2.51 2.73
Powgr (W) 21.91 20.69 22.06 19.74 22.20 20.43
Ava AcTIviTY 0.15 0.47 0.18 0.17 0.15 0.24
ENERGY (J)(x1073) | 0.63 0.48 1.27 1.09 2.50 2.15
ED? (Js?) 2.05e-10 | 0.75e-10 | 2.10e-10 | 0.79e-10 | 2.42e-10 1.03e-10

5.4 Summary

In this chapter, we tried to bring out the importance of computation bounded threads on

processorsperformancesslnsthe Chapter 3, we showcased temperature constrained aggressive
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microprocessor systems. Power, as a metric has earned its name to be a first class constraint in
today’s microprocessors. In this chapter, we focused on microprocessors running on constrained
power budget. The goal of our investigation is to ensure if DVARFS can work under power
constrained environment. We recognized that for the same power budget, there are more than
one voltage-frequency pairs. It is up to the power management algorithm to choose the best
one with power and performance in mind. In our next chapter, we address this issue from a

wider perspective, in chip multiprocessors.
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CHAPTER 6. UTILIZATION BASED TASK SCHEDULING IN CHIP
MULTIPROCESSORS

As a result of remarkable evolution of process technology, the idea of placing more than
one processing core on a chip is not farfetched anymore. With Chip Multiprocessors (CMPs)
already available in market, the road maps predict hundreds of cores in the next decade [91, 55],
essentially shrinking today’s data centers to a single chip. This implies that the power and
thermal management will be of the utmost importance in such systems [92]. Current power
management techniques use DVFS for on-line power and thermal management. It has been
shown that independent per-core DVFS combined with thread migration improves performance
up to 2.6X over a per-core gating [47]. Several variants of DVFS extension to CMPs have been
developed [93, 94, 95, 96, 52]. Nevertheless, as Chapter 3 emphasizes, the effectiveness of
DVEFS is hampered by slow voltage transitions. Products from the leading microprocessor
vendors, such as Intel and AMD, have monitoring techniques that take necessary corrective
actions to maintain power budget and on-chip temperature. Industry standards support a set
of predefined power levels, and allow software applications to choose an appropriate level based
on environmental conditions and workload. The software can precisely control the dynamic
power of the system to achieve the desired power/energy set point. In spite of all these
advancements, power management techniques based on DVFS suffers from circuit slow down
and voltage transitions.

In this chapter, our main aim is to showcase the following:

1. Utilization as a metric for Energy Efficiency : Not all the power supplied is transformed
into useful work! We present an analysis on inefficient power management using current

workloads due to excess power supply. We bring out utilization as a factor for choosing
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a power level, from a different perspective, rather than ad hoc division of total power

budget based on core utilization.

2. Utilization-aware Task Scheduling (UTS) : We develop an energy-efficient power man-
agement solution for CMPs. In addition to the existing power constraints, we bring in
the utilization metric constraint to map the set of threads to the cores and manage the
excess power supplied. This model, along with aggressive, reliable framework will per-
form very differently than any of the existing power management techniques in improving

the overall system efficiency provided timing errors are harnessed.

Although it may seem straightforward at first sight to extend DVARFS to a CMP, it is
more involved. In CMP, the temperature not only depends on the current core’s state, but also
on neighborhood temperature. Thus, it requires a careful task scheduling aware of the core
states. Moreover, the workloads that run on these cores are diverse. Each workload has dif-
ferent effect in raising the core temperature. Several works have been proposed characterizing
tasks according to their workload intensity. However, very few works have been investigated,
combining better than worst case approaches with task scheduling, to squeeze out extract
maximum performance beyond conservative limits. We also take a step further to bring in
dynamic lifetime reliability management by controlling voltage and frequency of the individual

cores during run time.

6.1 Task Characteristics and Energy Efficiency

In order to develop an energy-efficient power management technique, it is important to
understand the behavior of standard workloads. Different workloads have different patterns of
computation, memory and input/output (IO). For illustration, consider Figure 6.1(a) and (b)
that shows the application throughput for SPEC benchmark suite [97]. Each pair of points
on a vertical level corresponds to one benchmark. The wide variability is shown in the figure
across benchmarks and base versus peak. We observe from the figure that the benchmarks
have variegated throughput. The throughput is expected to vary if the supply voltage is

alteredspdependingsuponsthe computational density (Recall Figure 5.1). Thus in addition to
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the processor power requirements, we also need to consider thread power requirements, which

cannot be ignored for energy-efficient processing.
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Figure 6.1 Throughput of SPEC benchmark suite on Intel Xeon processor
(a) SPECINT (b) SPECFP (c¢) Throughput of different threads
(with different «) and the dynamic power supplied at different
power levels

It is a common scenario in the case of CMPs, where each core competes with the other to
keep itself at the highest power level. If a core is set to operate at the maximum allowed power
level based on meeting the target power budget, then it is likely that a core may be supplied
more power than that is required to achieve the needed level of throughput. For instance, a
highly memory (or I0) bound thread is not going to perform any better no matter how high
the power level is. As current processors had already hit the power wall, it is outrageous to
disuse energy that cannot be utilized. Therefore, it is necessary to consider the utilization
factor awareness in addition to the existing power constraints when mapping threads to cores

and deciding power levels for the cores.

6.1.1 Utilization Aware Power Management

Let us look back at Equation 3.3 to calculate the speed-up at different power levels. To
understand the efficiency better, we plotted the throughput of threads with different values
of p and the dynamic power at different power levels. The results (lines) in Figure 6.1 (c)
show the throughput values for various classes of workloads (Specifically, for © = 5,10, 15 and
20%). For illustration purpose we chose C,, = 10 cycles. The vertical bars correspond to

ized po ied-at different power levels. The vertical axes are scaled accordingly

—
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to match the throughput obtained and power supplied. The bars rising beyond the throughput
curves illustrate the excess power supplied to the threads beyond the requirement. Although,
the system meets the power budget and there is no loss in performance, keeping the cores at
higher power set point leads to loss of efficiency. In other words, to increase the overall system
efficiency without loss of performance, it is required that each core gets supplied the exact

power it will use. In the forthcoming sections we propose our solution to achieve this goal.

6.2 Power Budgeting for Chip Multiprocessors

The power management techniques currently use DVFES for on-line power and thermal
management. Traditionally, all the DVFS associated techniques focus on retaining the system
at the maximum power level that meets the required power budget. As discussed above, this
does not always guarantee higher CPU efficiency. Moreover, these predetermined power states
are set at the worst-case level that leads to significant performance loss. To understand the
issue of achieving the optimal performance, we briefly present how the state-of-the-art power
management problem is formulated [98].

Suppose N threads are to be assigned to a IN core system. The goal is to maximize the
throughput (7'p) under the given power budget without breaching the voltage constraints. This
is modeled as a linear optimization problem, as given below:

Mazximize Tp = % Zﬁiﬁl tp;.

Subjected to:

L. Viow < v; < Vhigh, Vi€ 0...N —1,

2. bjv; + ¢; < Peoremaz V1 €0...N — 1, and

3. SN M b + €i) < Prarget

Here, tp; is the individual core throughput, which is modeled as being proportional to the core
power level. That is, tp; = a;v; Vi € 0... N — 1, where q; is a workload dependent constant.
Notice that a; can be computed only after a task to core assignment has been completed. The
existing approach is to use the predicted values based on iterative approach. Vj;gn and Vi,

are the upper and lower bounds for individual core voltage levels, Piyr4e¢ is the total power
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budget, Proremaz 1S the maximum power that an individual core could handle, and b; and ¢;
are core dependent parameters.

A multitude of research works similar to the above scheme have been proposed and success-
fully implemented [93, 94, 95, 96, 52]. Near future technology allows placing most of present
day’s off-chip components on core, enabling per-core power level adjustments [48]. With such
flexibility, the future many-core systems enable ultra-fine grained power management using
DVFS at nanosecond scale in contrast to the existing order of tens of microseconds. The exist-
ing power management algorithms do not fully make use of this potential. Current techniques
simply try to split the total power budget (now, more accurately) across all the cores. They
overlook the fact that the total power supplied is not always usefully expended. From the
energy efficiency point of view this becomes a bottleneck.

In order to improve the overall system efficiency, it is necessary to redefine the objective of
the power management scheme to accurately assign the required power to all the cores, subject
to the power budget constraint. The required power by a core depends on various factors, such

as workload, core locality and parameter variations.

6.3 Utilization-aware Task Scheduling for the Many-Core Systems

In this section, we propose Utilization-aware Task Scheduling (UTS), an energy-efficient
power management solution for the CMPs. We will bring in the efficiency constraint to map
the set of threads to the cores in addition to the existing set of power constraints. This model
will perform very differently than any of the existing power management techniques. We will
also consider the power needs of the thread based on the expected throughput. Our goal is
to develop a thread power assignment algorithm, at every sampling interval, under the stated
constraints such that the overall system efficiency is improved without bringing out additional
overhead. In a many-core system, the temperature not only depends on the current core’s
state, but also on neighborhood temperature. Thus, it requires a careful task scheduling aware
of the core states. Moreover, as the workloads are diverse, each thread has different effect in

raising the core temperature. As we had shown earlier, DVARFS control loop is an effective

www.manaraa.com



104

way to handle thermal emergencies.

We formulate UTS as a linear optimization maximizing problem akin to one explained in
Section 6.2. We replace constraint 2 by bjv; + ¢; < Proremaz-@'s . Where, a/; is the predicted
workload dependent constant associated with throughput of core i. We use history based
profiling techniques to predict the thread activity in the next execution window, similar to
ones existing works implement. That is, for every core i, we obtain a; during each interval.
Based on all the a;s obtained over several intervals, a) is predicted for the next interval.

Depending on the computation, memory and IO densities of the profiles, the power level
is assigned accordingly. While assigning the power level, we use the (V,f) pair assignment,

discussed in Chapter 3.

6.4 Simulation Framework

As a part of evaluating our earlier works presented in [56] and [73], we developed a single
core simulation framework using sim-outorder - a software functional simulator in SimpleScalar|[59],
for 64-bit Alpha EV6 processor. We extend this framework to build our CMP environment.
The entire framework consists of four major modules, (a),(b),(c) and (d), as illustrated in
Figure 6.3. Our experiment involves a combination of both online and offline simulations. A

brief description of each of these modules is presented here.

6.4.1 Single Core Simulation

As stated above, we extend our single core evaluation framework to multiple cores. We
use the software functional simulator, sim-outorder in SimpleScalar[59]. Table 4.1 provides the
baseline configuration for the simulator. Our approach is based on exhaustive profiling of each
of the workloads for all possible combinations of voltage-frequency (VF) pairs. This forms
the first part of the offline simulations, illustrated by module (c) in Figure 6.3. In addition
to the power profile dumped, we also collect relevant performance related profiles from the
cycle accurate simulator, to facilitate the task scheduler. To incorporate the effect of voltage

transition, we include a penalty as obtained from [99]. The penalty is included at the beginning
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of execution during every voltage transition. We also include the leakage power dissipated by
the pipeline during the transition period.

For modeling power, we use Wattch[61]. Wattch is an accurate, architecture level power
tool that is embedded within sim-outorder of the SimpleScalar simulator. Wattch calculates
the energy accumulated over the cycles. We modified the tool to track the instantaneous
power for each functional block. As leakage power is becoming a dominant contributor to
total power in the nanometer scale designs, we modified Wattch to include this. We establish
our experiments with current state of the art by designing our simulations for the 45nm and

sub-45nm technologies.

6.4.2 Multiple Core Extension

Figure 6.2 Steady state temperature profile for an oct-core processor. The
floorplan is Generated by Mirroring and Replicating the Single
Core floorplan

6.4.3 Incorporating Timing Errors

In order to bring in the aspects of timing speculation, we model a reliably overclocked
processor using timing simulations. We obtain error profiles by running application binary on

a hardware model. We record the number of timing errors that occur at a given clock frequency
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in the hardware model of a superscalar processor. In that process, we analyze the error rate
for the different pipeline stages of a superscalar, dynamically scheduled integer pipeline similar
in complexity to the Alpha 21264 [100] that executes a subset of the Alpha instruction set.
We use the Illinois Verilog Model (IVM) [101] - a Verilog RTL implementation of the Alpha
microprocessor and synthesized individual pipeline stages using the 45nm OSU standard cell
library [102]. This becomes the second part of the offline simulations (Figure 6.3 (c)). The
errors corresponding to each circuit slowdown is used as the timing error profile for each VF

pair.

6.4.4 Power and Timing Error Profile

The power and timing error profiles generated during the offline simulations are stored in
a global directory, as key-value pairs, for individual workloads. Part (b) of the figure depicts
this. For any given workload, each key-value entry reflects the corresponding processor state
during that instant of execution. Thus the entire execution of the workload is preserved in
the form of directory listing. These profiles are used by the different instances of cores during

actual run.

6.4.5 Incorporating Thermal Model

We use HotSpot (part (d) of the figure), an efficient architecture level thermal modeling
tool to calculate temperature[60]. HotSpot requires the CMP floorplan as one of the inputs.
It also needs the instantaneous power dissipated for every cycle. Depending on the current
core’s VF pair assignment, this is provided from the directory corresponding to the executing
workload. The total power accumulated during the previous sampling time and the maximum

temperature reached by each of the cores is reported to the power monitor, part (a).

6.4.6 Task Scheduler and Power/Thermal Management

Part (a) of the simulation framework illustrates this module. Basically, this is the wrapper

module for the remaining part of the framework. The task scheduler includes the task queue,
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where each task is assigned individually to the respective cores. Power monitor assigns per
core (V, f) levels according to the power/temperature reported during the previous cycle by
HotSpot. An added advantage of using task scheduler as a wrapper module is that, we can
dynamically issue, preempt or migrates tasks on the fly more conveniently in the former case.
Further, the advantage of the profile based simulation compared to explicit multiple instances
of single core simulation is several folds. Apart from the better wall-clock time for simulation,
the former allows better scalability for multiple cores. The main reason for speed is because
of the simpler synchronization procedure across cores. In the case of multiple execution copies
(parallel simulations), the cores must be synchronized every cycle to match the corresponding
temperature entries with HotSpot. During typical execution, this takes much longer time

compared to synchronizing file reads.

Ready Queue
Task Schedul P owen Accumulated Power
e ] ¢ and Max Temperature
Accumulated

Timing Errors
(@ Workload I Per Core
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R
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i s e )
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Figure 6.3 Simulation environment for managing power and temperature
in aggressive and reliable chip multiprocessor
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6.5 Evaluating UTS

We use the simulation framework mentioned above to evaluate UTS. We perform a com-
parative study against traditional linear optimization scheme. We use Intel Speedstep voltage-
frequency pair settings for this mode (¢rad). The linear optimization for power budgeting in
trad is similar to any of the existing schemes. For this study, we use the method described in
[98]. In our next mode, we go a step further by incorporating dynamic (V,f) pairing as in the
case of DVARFS (dvarfs). Intuitively, we expect a finer grained power management as there
are multiple options of choosing a (V,f) level for the same power budget. We compare these
two modes against UTS (uts). In uts, we use multiple frequency levels for any given voltage
level similar to dvar fs. For our experiment, we use four voltage levels similar to single core
scheme, and eight frequency levels per voltage level. In both these cases the system is prone
to timing errors due to aggressive frequency scaling beyond worst case limits. We account for
the penalties due to these errors as we did in the case of single core evaluation. In this case
however, we limit the timing errors under 10% per core.

For our evaluation, we did a number of simulation runs for different settings. We perform
our simulations for a number of core settings, viz., 8, 12, 16 and 20 cores. For each of these
settings we chose three task queue sizes, viz., 32, 64 and 128. Each simulation setting is
represented by (xC:yQ), where z and y are the number of cores and queue length, respectively.

All the results presented are normalized relative to trad mode.

6.5.1 Activity and Power Dissipation

Figure 6.5 shows a window of activity trace for trad and uts during the run of 8 core
CMP. The x-axis units represent the sampling intervals. As it is clearly seen, the execution
window comprises of diverse workload executions in either cases. This is quite evident from
the frequent fluctuations of the activity factor from one level to another, typically from 40%
to 90%. Lower activity implies higher percentage of memory/IO instructions in the workload
(or a memory /IO bound workload), while higher activity implies higher computational density

in the workload. From this graph we understand that there is a good mix of workloads from
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each type. The second reason to study this graph is to verify that the workload selection has
created a level playing field for the different modes. As illustrated in the figure, this seems
evident.

The chart illustrated in Figure 6.6 reports the total power supplied to the 8 core CMP
at every sampling interval during the execution window corresponding to the activity trace
chart. We chose 150W power budget for the CMP and 25W for individual cores. We also
provided a 10% tolerance to the supplied power to make sure the linear optimization always
converges, and also to allow a margin for possible error during activity prediction for next
interval. We start the simulation runs assuming 100% activity for the first prediction interval.
This is the reason why both trad and uts start at the highest power levels. The working of
uts is clearly reflected from this figure, where we see a lot of fluctuations in the total power
supplied. Looking deeper into it, we understand that these fluctuations directly correspond to
the activity of the current workload. As mentioned earlier, we use a simple prediction algorithm
for estimating the activity of the next interval for each mode. Whenever, the predicted activity
is low, the power supplied is reduced correspondingly in uts. This is the reason why the total
power supply never increases above the budget. In fact, uts tends to keep the power budget
within the lower end of the 10% margin. However, this is not the case for trad, where not only
there are very few options of choosing power levels, but also the fact that it tries to divide the
maximum power supplied among the cores keeps the overall power constant.

Figure 6.7 shows the average power dissipation across all 8 cores for the three modes,
trad, dvarfs and wuts. For the reasons explained above, CMP implementing ¢trad tend to
dissipate more power. The main point to be noted here is that, even though trad seem to
consume more power, in reality it is still under the power budget (including tolerance). The
significance of aggressive frequency scaling (multiple frequency levels at each voltage level) is
evident from the power consumption of dvarfs. It should be noted that there is no change
in the optimization algorithm or formulation from trad to dvarfs. The only difference is in
the number of available frequency levels per voltage. As it can be observed, dvar fs consumes

15-25% lesser power compared to trad.
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In uts, the power supply to each core is adapted depending on the workload’s computational
density. It is observed that for some cores, over 45% of power saving is possible using uts.
It is worthwhile to stress the point that this 45% power goes unused (excess power supplied),

which is typically loss of efficiency in the case of trad.

6.5.2 Average Power, Performance and ED?

Figures 6.8, 6.9 and 6.10 illustrates power, performance and ED? for different simulation
configurations, respectively. The results shown are the average values across all cores. Power
dissipation for uts in all the cases are better than the other two modes. uts saves from 25 to
45% of power relative to traditional power assignment scheme. Maximum power is saved for
the 8 core CMP with queue size 32.

In most cases dvar fs saves power, while in few cases trad consumes less power. Maximum
power is consumed for the 16 core configuration with queue length 32. A general observation
is that dwvar fs performs better for larger queue lengths. A reasonable explanation for this is
that more than half of the selected workloads (6 integer and 7 floating point) are computation
bounded. Hence, a larger queue provides much more opportunity for saving power while
improving performance through overclocking than a smaller queue. However, this trend is no
longer seen in the case of uts because, in this scheme aggressive overclocking is limited by the
core activity.

Comparing the performance of trad with dvarfs and uts, we see that there is a significant
performance improvement (10%) of the latter modes relative to trad. However, there is not
much difference in performance between the latter two modes. Maximum performance of
around 12% is achieved for 16 core CMP with queue length 64.

ED? measures the useful work done in a power constrained high performance system. It is
clearly illustrated how dvarfs and uts use minimal ED? compared to existing methods. Over
50% savings in ED? is achieved for the 12 core configuration. In single core simulations we
showcased how effective DVARFS scheme works in terms of ED?. However, the utilization-

aware task scheduling has gone a step further by outperforming DVARFS based scheme in
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every configuration.

6.6 Summary

Power budgeting is one of the critical activities for efficient functioning of present day’s chip
multiprocessors. Traditional way of power allocation among cores leads to loss of efficiency
due to excess power supplied for non-compute bound workloads. In this chapter, we brought
forward the significance of efficiency in terms of core utilization and power supply. We pro-
posed UTS, bringing the additional utilization constraint to the existing power management
technique. From our evaluation we inferred that UTS improves performance by up to 12%
due to aggressive power level switching. We also inferred that UTS saves over 50% in ED?
compared to traditional power management techniques.

Based on our research we recommend that future multi-core systems should deploy

1. local fault detection and recovery circuitry to support aggressive, but reliable timing

speculation for efficient, on-line power & thermal control, and performance enhancement.

2. a power management scheme that not only assigns power to individual cores based on

its utilization, but also curtails the excess power that will be supplied to the cores.

3. utilization aware task scheduling along with aggressive timing speculation in order to
squeeze out maximum performance from the system without loss of efficiency and breach-

ing power & thermal constraints.

Results from our evaluation look promising for possible realization of the architecture in hard-
ware prototype. We strongly believe that such a circuit will provide a unified solution for both

fault-tolerant and power-aware systems.
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Figure 6.4 Flowchart for the chip multiprocessor simulation framework
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Activity Trace for 8 Core CMP
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Figure 6.5 Activity trace across sampling intervals for SPEC workloads for
8 Core CMP
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Normalized Power Trace for 8 Core CMP
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Figure 6.6 Power trace across sampling intervals for SPEC workloads for
8 Core CMP
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Normalized Power per Core for 8 Core CMP
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Figure 6.8 Normalized power chart comparing UTS against traditional and

DVAREFS scheduling schemes for different number of cores and
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CHAPTER 7. CONCLUSION AND FUTURE WORKS

Microprocessors are designed to function reliably for the worst-case settings, allowing pos-
sible performance improvement by making common cases faster, and creating opportunity to
improve processor performance to a greater extent through overclocking. When the system
is forced to operate beyond this conservative limit, they also adversely impact on-chip tem-
peratures, leading to hot spots. Overclocking enthusiasts invest heavily in expensive cooling
solutions to protect the chip from overheating, and such overclocked systems typically have sig-
nificantly lower lifetime. Additionally, reliable overclocking techniques necessitate additional
circuitry, leading to an increase in power consumption. Higher clock speeds and power den-
sities invariably lead to accretion of on-chip temperature over a period of time. As systems
operate faster, on-chip temperatures quickly reach and exceed the safe limits. This poses a
serious threat to the lifetime reliability of the systems in the present and near future. The very
intention of this dissertation is to overcome the challenges brought forth by recent technologi-
cal advancements in the field of computer architecture. In particular, to develop software and
hardware solutions to overcome the conservative design approaches due to process, voltage,
and temperature variations in digital circuits.

In this thesis, we presented an overview of specific limits suffered by reliably overclocked
systems. We showcased impact of power on chip temperatures and analyzed its effect on
lifetime reliability. By adopting to a typical reliable overclocking framework, we studied the
thermal behavior of Alpha processor. We made the case for the need of a powerful thermal
management scheme in reliably overclocked circuits. We proposed an efficient technique for
performance enhancement and thermal management called the DVARFS scheme, exploring a

new direction to manage on-chip thermal conditions to achieve maximal performance benefits.
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The DVARFS mechanism facilitates to reliably overclock the processor under thermal bounds
at target lifetime with a programmable error rate. We established an extensive simulation
framework environment, integrating various tools to perform our simulation studies. Using
this framework we have shown that the DVARFS scheme performance in par with existing
DVEFS scheme despite exceeding the worst-case operating frequency. We achieved vast im-
provements in performance compared to traditional designs assuming target system lifetime.
Our simulation results reveal that controlled reliable overclocking is indeed a beneficial way to
enhance performance taking thermal constraints into consideration.

We have shown how short path delay in digital circuits is a major bottleneck for achieving
higher performance in timing speculation architectures. After theoretical analysis, we demon-
strated how much performance improvement is achievable by increasing the contamination
delay of the circuit without affecting the critical path delays. We proposed a solution to in-
crease the short path delays so that they are no longer a constriction for timing speculation.
We introduced the Min-Arc algorithm that efficiently places buffers in along the edges of the
short-paths. We have shown that the Min-Arc is able to increase the contamination delay of
all the circuits without affecting propagation delay. Our algorithm is designed in such a way
that even in the case where increasing short path delay is not possible without affecting critical
paths, with a slight margin on propagation delay it achieves the intended goal. We observed
moderate area increase in the circuits implementing the Min-arc algorithm. In short, it is not
an overstatement to say that Min-arc algorithm successfully increases the contamination delay
of logic circuits with moderate area penalty.

It has become common for the present day systems to have multicore processors. Allocation
of power to each core is a tricky problem. With the way existing power schedulers work, there is
still a wide margin for improving system efficiency. In this thesis, we showcased how prioritizing
utilization in power management algorithm improves energy efficiency significantly. From our
evaluation we inferred that UTS improves performance significantly due to aggressive power
level switching. We also inferred that UTS cuts down ED? consumption by over half compared

to traditional power management techniques. Results from our evaluation look promising for
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possible realization of the architecture in hardware prototype. We strongly believe that such
a circuit will provide a unified solution for both fault-tolerant and power-aware systems.

As a part of our evaluation process, we built an extensive simulation environment by
integrating SimpleScalar - a C based simulator for Alpha EV6 processor, with Wattch power
model and integrated thermal model, HotSpot. Timing details are brought from the hardware
experiments that are run on a 45nm gate level implementation of the superscalar processor.

To summarize, the goal of this thesis is to develop a system having the potential to provide
dynamic knobs to adjust power consumption, performance, energy and temperature. We
believe this is a very significant paradigm that will revolutionize the design of multi-core
architectures and peta-scale computing system design. This research experience has given
many valuable insights into the functionalities of micro-architectures and chip multiprocessors.

This dissertation is an exploration to dynamically managing voltage and frequency beyond
the worst-case design specifications. The results we have obtained are very promising, opening
up different directions for the near future.

We are continuing this work by implementing our scheme on a hardware platform such as
FPGA and tracking temperature on-line through thermal sensors. We are approaching industry
to plan a test of our model with an ASIC model. The results we obtained at this juncture are
very promising, setting up many different directions for the near future. Hardware realization,
like FPGAs or ASICs, will make the case stronger for timing speculation architectures in

commercial circuits.
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A. EXECUTION TRACES

This appendix illustrates the execution traces of the SPEC INT and FP workloads that
we simulated for the comparative study of DVARFS with other modes discussed in Chapter 3.
We executed six integer and seven floating point workloads for the analysis. Figures A.1 and
A.2 show the voltage trace, Figures A.3 and A.4 show the frequency trace and A.5 and A.6
show the error traces. Temperature and MTTF are illustrated in Figures A.7, A.8 and A.9,
A.10, respectively.

Following this, we present the power and energy related metrics from Figures A.11 through
A.18. A detailed, zoomed in illustration for each of these parameters and metrics during an
execution window is presented in Figures A.19, A.20 and A.21. With all the traces, we were
able to understand the working of different techniques for each of the executing threads. We

were also able to assert the simulation functionality.
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Figure A.7 Temperature trace for SPEC INT workloads
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Figure A.20 Zoomed window of temperature, MTTF and power traces
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